MakeItFrom.com
Menu (ESC)

CC484K Bronze vs. C69300 Brass

Both CC484K bronze and C69300 brass are copper alloys. They have 76% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is CC484K bronze and the bottom bar is C69300 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
110
Elongation at Break, % 11
8.5 to 15
Poisson's Ratio 0.34
0.32
Shear Modulus, GPa 41
41
Tensile Strength: Ultimate (UTS), MPa 330
550 to 630
Tensile Strength: Yield (Proof), MPa 200
300 to 390

Thermal Properties

Latent Heat of Fusion, J/g 190
240
Maximum Temperature: Mechanical, °C 170
160
Melting Completion (Liquidus), °C 1000
880
Melting Onset (Solidus), °C 870
860
Specific Heat Capacity, J/kg-K 370
400
Thermal Conductivity, W/m-K 70
38
Thermal Expansion, µm/m-K 18
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 9.1
8.0
Electrical Conductivity: Equal Weight (Specific), % IACS 9.3
8.8

Otherwise Unclassified Properties

Base Metal Price, % relative 37
26
Density, g/cm3 8.7
8.2
Embodied Carbon, kg CO2/kg material 3.9
2.7
Embodied Energy, MJ/kg 64
45
Embodied Water, L/kg 400
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 32
47 to 70
Resilience: Unit (Modulus of Resilience), kJ/m3 180
400 to 700
Stiffness to Weight: Axial, points 6.9
7.4
Stiffness to Weight: Bending, points 18
19
Strength to Weight: Axial, points 10
19 to 21
Strength to Weight: Bending, points 12
18 to 20
Thermal Diffusivity, mm2/s 22
12
Thermal Shock Resistance, points 12
19 to 22

Alloy Composition

Aluminum (Al), % 0 to 0.010
0
Antimony (Sb), % 0 to 0.1
0
Copper (Cu), % 84.5 to 87.5
73 to 77
Iron (Fe), % 0 to 0.2
0 to 0.1
Lead (Pb), % 0 to 0.3
0 to 0.090
Manganese (Mn), % 0 to 0.2
0 to 0.1
Nickel (Ni), % 1.5 to 2.5
0 to 0.1
Phosphorus (P), % 0.050 to 0.4
0.040 to 0.15
Silicon (Si), % 0 to 0.010
2.7 to 3.4
Sulfur (S), % 0 to 0.050
0
Tin (Sn), % 11 to 13
0 to 0.2
Zinc (Zn), % 0 to 0.4
18.4 to 24.3
Residuals, % 0
0 to 0.5