MakeItFrom.com
Menu (ESC)

CC490K Brass vs. CR012A Copper

Both CC490K brass and CR012A copper are copper alloys. Both are furnished in the as-fabricated (no temper or treatment) condition. They have 84% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is CC490K brass and the bottom bar is CR012A copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
120
Elongation at Break, % 15
15
Poisson's Ratio 0.34
0.34
Shear Modulus, GPa 40
43
Tensile Strength: Ultimate (UTS), MPa 230
220
Tensile Strength: Yield (Proof), MPa 110
130

Thermal Properties

Latent Heat of Fusion, J/g 190
210
Maximum Temperature: Mechanical, °C 160
200
Melting Completion (Liquidus), °C 980
1090
Melting Onset (Solidus), °C 910
1040
Specific Heat Capacity, J/kg-K 370
390
Thermal Conductivity, W/m-K 72
390
Thermal Expansion, µm/m-K 19
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 16
100
Electrical Conductivity: Equal Weight (Specific), % IACS 16
100

Otherwise Unclassified Properties

Base Metal Price, % relative 30
33
Density, g/cm3 8.8
9.0
Embodied Carbon, kg CO2/kg material 2.9
2.7
Embodied Energy, MJ/kg 47
42
Embodied Water, L/kg 340
360

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 28
29
Resilience: Unit (Modulus of Resilience), kJ/m3 54
76
Stiffness to Weight: Axial, points 6.8
7.2
Stiffness to Weight: Bending, points 18
18
Strength to Weight: Axial, points 7.3
6.8
Strength to Weight: Bending, points 9.5
9.0
Thermal Diffusivity, mm2/s 22
110
Thermal Shock Resistance, points 8.2
7.8

Alloy Composition

Aluminum (Al), % 0 to 0.010
0
Antimony (Sb), % 0 to 0.3
0
Bismuth (Bi), % 0
0 to 0.00050
Copper (Cu), % 81 to 86
99.85 to 99.94
Iron (Fe), % 0 to 0.5
0
Lead (Pb), % 3.0 to 6.0
0
Nickel (Ni), % 0 to 2.0
0
Oxygen (O), % 0
0 to 0.040
Phosphorus (P), % 0 to 0.050
0
Silicon (Si), % 0 to 0.010
0
Silver (Ag), % 0
0.060 to 0.080
Sulfur (S), % 0 to 0.1
0
Tin (Sn), % 2.0 to 3.5
0
Zinc (Zn), % 7.0 to 9.5
0