MakeItFrom.com
Menu (ESC)

CC490K Brass vs. C68700 Brass

Both CC490K brass and C68700 brass are copper alloys. They have 86% of their average alloy composition in common. There are 26 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is CC490K brass and the bottom bar is C68700 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
110
Poisson's Ratio 0.34
0.32
Shear Modulus, GPa 40
41
Tensile Strength: Ultimate (UTS), MPa 230
390
Tensile Strength: Yield (Proof), MPa 110
140

Thermal Properties

Latent Heat of Fusion, J/g 190
190
Maximum Temperature: Mechanical, °C 160
160
Melting Completion (Liquidus), °C 980
970
Melting Onset (Solidus), °C 910
930
Specific Heat Capacity, J/kg-K 370
400
Thermal Conductivity, W/m-K 72
100
Thermal Expansion, µm/m-K 19
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 16
23
Electrical Conductivity: Equal Weight (Specific), % IACS 16
25

Otherwise Unclassified Properties

Base Metal Price, % relative 30
26
Density, g/cm3 8.8
8.3
Embodied Carbon, kg CO2/kg material 2.9
2.8
Embodied Energy, MJ/kg 47
46
Embodied Water, L/kg 340
340

Common Calculations

Resilience: Unit (Modulus of Resilience), kJ/m3 54
90
Stiffness to Weight: Axial, points 6.8
7.3
Stiffness to Weight: Bending, points 18
19
Strength to Weight: Axial, points 7.3
13
Strength to Weight: Bending, points 9.5
14
Thermal Diffusivity, mm2/s 22
30
Thermal Shock Resistance, points 8.2
13

Alloy Composition

Aluminum (Al), % 0 to 0.010
1.8 to 2.5
Antimony (Sb), % 0 to 0.3
0
Arsenic (As), % 0
0.020 to 0.1
Copper (Cu), % 81 to 86
76 to 79
Iron (Fe), % 0 to 0.5
0 to 0.060
Lead (Pb), % 3.0 to 6.0
0 to 0.070
Nickel (Ni), % 0 to 2.0
0
Phosphorus (P), % 0 to 0.050
0
Silicon (Si), % 0 to 0.010
0
Sulfur (S), % 0 to 0.1
0
Tin (Sn), % 2.0 to 3.5
0
Zinc (Zn), % 7.0 to 9.5
17.8 to 22.2
Residuals, % 0
0 to 0.5