MakeItFrom.com
Menu (ESC)

CC490K Brass vs. C74500 Nickel Silver

Both CC490K brass and C74500 nickel silver are copper alloys. They have 74% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is CC490K brass and the bottom bar is C74500 nickel silver.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
120
Elongation at Break, % 15
3.0 to 24
Poisson's Ratio 0.34
0.32
Shear Modulus, GPa 40
44
Tensile Strength: Ultimate (UTS), MPa 230
390 to 700
Tensile Strength: Yield (Proof), MPa 110
380 to 600

Thermal Properties

Latent Heat of Fusion, J/g 190
190
Maximum Temperature: Mechanical, °C 160
170
Melting Completion (Liquidus), °C 980
1020
Melting Onset (Solidus), °C 910
970
Specific Heat Capacity, J/kg-K 370
390
Thermal Conductivity, W/m-K 72
45
Thermal Expansion, µm/m-K 19
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 16
9.0
Electrical Conductivity: Equal Weight (Specific), % IACS 16
9.7

Otherwise Unclassified Properties

Base Metal Price, % relative 30
29
Density, g/cm3 8.8
8.3
Embodied Carbon, kg CO2/kg material 2.9
3.4
Embodied Energy, MJ/kg 47
54
Embodied Water, L/kg 340
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 28
12 to 160
Resilience: Unit (Modulus of Resilience), kJ/m3 54
620 to 1540
Stiffness to Weight: Axial, points 6.8
7.7
Stiffness to Weight: Bending, points 18
19
Strength to Weight: Axial, points 7.3
13 to 23
Strength to Weight: Bending, points 9.5
14 to 21
Thermal Diffusivity, mm2/s 22
14
Thermal Shock Resistance, points 8.2
13 to 23

Alloy Composition

Aluminum (Al), % 0 to 0.010
0
Antimony (Sb), % 0 to 0.3
0
Copper (Cu), % 81 to 86
63.5 to 66.5
Iron (Fe), % 0 to 0.5
0 to 0.25
Lead (Pb), % 3.0 to 6.0
0 to 0.1
Manganese (Mn), % 0
0 to 0.5
Nickel (Ni), % 0 to 2.0
9.0 to 11
Phosphorus (P), % 0 to 0.050
0
Silicon (Si), % 0 to 0.010
0
Sulfur (S), % 0 to 0.1
0
Tin (Sn), % 2.0 to 3.5
0
Zinc (Zn), % 7.0 to 9.5
21.2 to 27.5
Residuals, % 0
0 to 0.5