MakeItFrom.com
Menu (ESC)

CC490K Brass vs. S44537 Stainless Steel

CC490K brass belongs to the copper alloys classification, while S44537 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is CC490K brass and the bottom bar is S44537 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 76
180
Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 15
21
Poisson's Ratio 0.34
0.27
Shear Modulus, GPa 40
79
Tensile Strength: Ultimate (UTS), MPa 230
510
Tensile Strength: Yield (Proof), MPa 110
360

Thermal Properties

Latent Heat of Fusion, J/g 190
290
Maximum Temperature: Mechanical, °C 160
1000
Melting Completion (Liquidus), °C 980
1480
Melting Onset (Solidus), °C 910
1430
Specific Heat Capacity, J/kg-K 370
470
Thermal Conductivity, W/m-K 72
21
Thermal Expansion, µm/m-K 19
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 16
2.6
Electrical Conductivity: Equal Weight (Specific), % IACS 16
3.0

Otherwise Unclassified Properties

Base Metal Price, % relative 30
19
Density, g/cm3 8.8
7.9
Embodied Carbon, kg CO2/kg material 2.9
3.4
Embodied Energy, MJ/kg 47
50
Embodied Water, L/kg 340
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 28
95
Resilience: Unit (Modulus of Resilience), kJ/m3 54
320
Stiffness to Weight: Axial, points 6.8
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 7.3
18
Strength to Weight: Bending, points 9.5
18
Thermal Diffusivity, mm2/s 22
5.6
Thermal Shock Resistance, points 8.2
17

Alloy Composition

Aluminum (Al), % 0 to 0.010
0 to 0.1
Antimony (Sb), % 0 to 0.3
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
20 to 24
Copper (Cu), % 81 to 86
0 to 0.5
Iron (Fe), % 0 to 0.5
69 to 78.6
Lanthanum (La), % 0
0.040 to 0.2
Lead (Pb), % 3.0 to 6.0
0
Manganese (Mn), % 0
0 to 0.8
Nickel (Ni), % 0 to 2.0
0 to 0.5
Niobium (Nb), % 0
0.2 to 1.0
Nitrogen (N), % 0
0 to 0.040
Phosphorus (P), % 0 to 0.050
0 to 0.050
Silicon (Si), % 0 to 0.010
0.1 to 0.6
Sulfur (S), % 0 to 0.1
0 to 0.0060
Tin (Sn), % 2.0 to 3.5
0
Titanium (Ti), % 0
0.020 to 0.2
Tungsten (W), % 0
1.0 to 3.0
Zinc (Zn), % 7.0 to 9.5
0