MakeItFrom.com
Menu (ESC)

CC491K Bronze vs. EN AC-42100 Aluminum

CC491K bronze belongs to the copper alloys classification, while EN AC-42100 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is CC491K bronze and the bottom bar is EN AC-42100 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 73
91
Elastic (Young's, Tensile) Modulus, GPa 110
70
Elongation at Break, % 13
3.4 to 9.0
Poisson's Ratio 0.34
0.33
Shear Modulus, GPa 40
26
Tensile Strength: Ultimate (UTS), MPa 260
280 to 290
Tensile Strength: Yield (Proof), MPa 120
210 to 230

Thermal Properties

Latent Heat of Fusion, J/g 190
500
Maximum Temperature: Mechanical, °C 160
170
Melting Completion (Liquidus), °C 980
610
Melting Onset (Solidus), °C 900
600
Specific Heat Capacity, J/kg-K 370
910
Thermal Conductivity, W/m-K 71
150
Thermal Expansion, µm/m-K 19
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 15
41
Electrical Conductivity: Equal Weight (Specific), % IACS 15
140

Otherwise Unclassified Properties

Base Metal Price, % relative 31
9.5
Density, g/cm3 8.9
2.6
Embodied Carbon, kg CO2/kg material 3.1
8.0
Embodied Energy, MJ/kg 51
150
Embodied Water, L/kg 350
1110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 27
9.1 to 23
Resilience: Unit (Modulus of Resilience), kJ/m3 67
300 to 370
Stiffness to Weight: Axial, points 6.7
15
Stiffness to Weight: Bending, points 18
53
Strength to Weight: Axial, points 8.1
30 to 31
Strength to Weight: Bending, points 10
37 to 38
Thermal Diffusivity, mm2/s 22
66
Thermal Shock Resistance, points 9.3
13

Alloy Composition

Aluminum (Al), % 0 to 0.010
91.3 to 93.3
Antimony (Sb), % 0 to 0.25
0
Copper (Cu), % 81 to 87
0 to 0.050
Iron (Fe), % 0 to 0.3
0 to 0.19
Lead (Pb), % 4.0 to 6.0
0
Magnesium (Mg), % 0
0.25 to 0.45
Manganese (Mn), % 0
0 to 0.1
Nickel (Ni), % 0 to 2.0
0
Phosphorus (P), % 0 to 0.1
0
Silicon (Si), % 0 to 0.010
6.5 to 7.5
Sulfur (S), % 0 to 0.1
0
Tin (Sn), % 4.0 to 6.0
0
Titanium (Ti), % 0
0 to 0.25
Zinc (Zn), % 4.0 to 6.0
0 to 0.070
Residuals, % 0
0 to 0.1