MakeItFrom.com
Menu (ESC)

CC491K Bronze vs. C94800 Bronze

Both CC491K bronze and C94800 bronze are copper alloys. Both are furnished in the as-fabricated (no temper or treatment) condition. They have a moderately high 93% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is CC491K bronze and the bottom bar is C94800 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
110
Elongation at Break, % 13
22
Poisson's Ratio 0.34
0.34
Shear Modulus, GPa 40
43
Tensile Strength: Ultimate (UTS), MPa 260
310
Tensile Strength: Yield (Proof), MPa 120
160

Thermal Properties

Latent Heat of Fusion, J/g 190
200
Maximum Temperature: Mechanical, °C 160
190
Melting Completion (Liquidus), °C 980
1030
Melting Onset (Solidus), °C 900
900
Specific Heat Capacity, J/kg-K 370
380
Thermal Conductivity, W/m-K 71
39
Thermal Expansion, µm/m-K 19
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 15
12
Electrical Conductivity: Equal Weight (Specific), % IACS 15
12

Otherwise Unclassified Properties

Base Metal Price, % relative 31
34
Density, g/cm3 8.9
8.8
Embodied Carbon, kg CO2/kg material 3.1
3.5
Embodied Energy, MJ/kg 51
56
Embodied Water, L/kg 350
350

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 27
58
Resilience: Unit (Modulus of Resilience), kJ/m3 67
110
Stiffness to Weight: Axial, points 6.7
7.2
Stiffness to Weight: Bending, points 18
18
Strength to Weight: Axial, points 8.1
9.8
Strength to Weight: Bending, points 10
12
Thermal Diffusivity, mm2/s 22
12
Thermal Shock Resistance, points 9.3
11

Alloy Composition

Aluminum (Al), % 0 to 0.010
0 to 0.0050
Antimony (Sb), % 0 to 0.25
0 to 0.15
Copper (Cu), % 81 to 87
84 to 89
Iron (Fe), % 0 to 0.3
0 to 0.25
Lead (Pb), % 4.0 to 6.0
0.3 to 1.0
Manganese (Mn), % 0
0 to 0.2
Nickel (Ni), % 0 to 2.0
4.5 to 6.0
Phosphorus (P), % 0 to 0.1
0 to 0.050
Silicon (Si), % 0 to 0.010
0 to 0.0050
Sulfur (S), % 0 to 0.1
0 to 0.050
Tin (Sn), % 4.0 to 6.0
4.5 to 6.0
Zinc (Zn), % 4.0 to 6.0
1.0 to 2.5
Residuals, % 0
0 to 1.3