MakeItFrom.com
Menu (ESC)

CC492K Bronze vs. EN 2.4816 Nickel

CC492K bronze belongs to the copper alloys classification, while EN 2.4816 nickel belongs to the nickel alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is CC492K bronze and the bottom bar is EN 2.4816 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 78
170
Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 14
34
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 40
74
Tensile Strength: Ultimate (UTS), MPa 280
700
Tensile Strength: Yield (Proof), MPa 150
270

Thermal Properties

Latent Heat of Fusion, J/g 190
310
Maximum Temperature: Mechanical, °C 170
1150
Melting Completion (Liquidus), °C 1000
1370
Melting Onset (Solidus), °C 900
1320
Specific Heat Capacity, J/kg-K 370
460
Thermal Conductivity, W/m-K 73
15
Thermal Expansion, µm/m-K 18
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 13
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 13
1.8

Otherwise Unclassified Properties

Base Metal Price, % relative 33
55
Density, g/cm3 8.8
8.5
Embodied Carbon, kg CO2/kg material 3.4
9.0
Embodied Energy, MJ/kg 54
130
Embodied Water, L/kg 370
260

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 33
190
Resilience: Unit (Modulus of Resilience), kJ/m3 100
190
Stiffness to Weight: Axial, points 6.8
13
Stiffness to Weight: Bending, points 18
23
Strength to Weight: Axial, points 8.7
23
Strength to Weight: Bending, points 11
21
Thermal Diffusivity, mm2/s 23
3.8
Thermal Shock Resistance, points 10
20

Alloy Composition

Aluminum (Al), % 0 to 0.010
0 to 0.3
Antimony (Sb), % 0 to 0.25
0
Carbon (C), % 0
0.050 to 0.1
Chromium (Cr), % 0
14 to 17
Copper (Cu), % 83 to 89
0 to 0.5
Iron (Fe), % 0 to 0.2
6.0 to 10
Lead (Pb), % 2.5 to 3.5
0
Manganese (Mn), % 0
0 to 1.0
Nickel (Ni), % 0 to 2.0
72 to 80
Phosphorus (P), % 0 to 0.1
0 to 0.020
Silicon (Si), % 0 to 0.010
0 to 0.5
Sulfur (S), % 0 to 0.1
0 to 0.015
Tin (Sn), % 6.0 to 8.0
0
Titanium (Ti), % 0
0 to 0.3
Zinc (Zn), % 1.5 to 3.0
0