MakeItFrom.com
Menu (ESC)

CC492K Bronze vs. SAE-AISI 1536 Steel

CC492K bronze belongs to the copper alloys classification, while SAE-AISI 1536 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is CC492K bronze and the bottom bar is SAE-AISI 1536 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 78
180 to 200
Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 14
14 to 18
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 40
73
Tensile Strength: Ultimate (UTS), MPa 280
640 to 720
Tensile Strength: Yield (Proof), MPa 150
360 to 600

Thermal Properties

Latent Heat of Fusion, J/g 190
250
Maximum Temperature: Mechanical, °C 170
400
Melting Completion (Liquidus), °C 1000
1460
Melting Onset (Solidus), °C 900
1420
Specific Heat Capacity, J/kg-K 370
470
Thermal Conductivity, W/m-K 73
51
Thermal Expansion, µm/m-K 18
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 13
7.1
Electrical Conductivity: Equal Weight (Specific), % IACS 13
8.1

Otherwise Unclassified Properties

Base Metal Price, % relative 33
1.8
Density, g/cm3 8.8
7.8
Embodied Carbon, kg CO2/kg material 3.4
1.4
Embodied Energy, MJ/kg 54
19
Embodied Water, L/kg 370
47

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 33
93 to 98
Resilience: Unit (Modulus of Resilience), kJ/m3 100
340 to 950
Stiffness to Weight: Axial, points 6.8
13
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 8.7
23 to 25
Strength to Weight: Bending, points 11
21 to 23
Thermal Diffusivity, mm2/s 23
14
Thermal Shock Resistance, points 10
20 to 23

Alloy Composition

Aluminum (Al), % 0 to 0.010
0
Antimony (Sb), % 0 to 0.25
0
Carbon (C), % 0
0.3 to 0.37
Copper (Cu), % 83 to 89
0
Iron (Fe), % 0 to 0.2
98 to 98.5
Lead (Pb), % 2.5 to 3.5
0
Manganese (Mn), % 0
1.2 to 1.5
Nickel (Ni), % 0 to 2.0
0
Phosphorus (P), % 0 to 0.1
0 to 0.040
Silicon (Si), % 0 to 0.010
0
Sulfur (S), % 0 to 0.1
0 to 0.050
Tin (Sn), % 6.0 to 8.0
0
Zinc (Zn), % 1.5 to 3.0
0