MakeItFrom.com
Menu (ESC)

CC492K Bronze vs. C31600 Bronze

Both CC492K bronze and C31600 bronze are copper alloys. They have a moderately high 91% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is CC492K bronze and the bottom bar is C31600 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
110
Elongation at Break, % 14
6.7 to 28
Poisson's Ratio 0.34
0.33
Shear Modulus, GPa 40
42
Tensile Strength: Ultimate (UTS), MPa 280
270 to 460
Tensile Strength: Yield (Proof), MPa 150
80 to 390

Thermal Properties

Latent Heat of Fusion, J/g 190
200
Maximum Temperature: Mechanical, °C 170
180
Melting Completion (Liquidus), °C 1000
1040
Melting Onset (Solidus), °C 900
1010
Specific Heat Capacity, J/kg-K 370
380
Thermal Conductivity, W/m-K 73
140
Thermal Expansion, µm/m-K 18
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 13
32
Electrical Conductivity: Equal Weight (Specific), % IACS 13
33

Otherwise Unclassified Properties

Base Metal Price, % relative 33
29
Density, g/cm3 8.8
8.8
Embodied Carbon, kg CO2/kg material 3.4
2.7
Embodied Energy, MJ/kg 54
43
Embodied Water, L/kg 370
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 33
30 to 58
Resilience: Unit (Modulus of Resilience), kJ/m3 100
28 to 690
Stiffness to Weight: Axial, points 6.8
7.1
Stiffness to Weight: Bending, points 18
18
Strength to Weight: Axial, points 8.7
8.5 to 15
Strength to Weight: Bending, points 11
11 to 15
Thermal Diffusivity, mm2/s 23
42
Thermal Shock Resistance, points 10
9.4 to 16

Alloy Composition

Aluminum (Al), % 0 to 0.010
0
Antimony (Sb), % 0 to 0.25
0
Copper (Cu), % 83 to 89
87.5 to 90.5
Iron (Fe), % 0 to 0.2
0 to 0.1
Lead (Pb), % 2.5 to 3.5
1.3 to 2.5
Nickel (Ni), % 0 to 2.0
0.7 to 1.2
Phosphorus (P), % 0 to 0.1
0.040 to 0.1
Silicon (Si), % 0 to 0.010
0
Sulfur (S), % 0 to 0.1
0
Tin (Sn), % 6.0 to 8.0
0
Zinc (Zn), % 1.5 to 3.0
5.2 to 10.5
Residuals, % 0
0 to 0.4