MakeItFrom.com
Menu (ESC)

CC492K Bronze vs. C47940 Brass

Both CC492K bronze and C47940 brass are copper alloys. They have 70% of their average alloy composition in common. There are 26 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is CC492K bronze and the bottom bar is C47940 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
100
Elongation at Break, % 14
14 to 34
Poisson's Ratio 0.34
0.31
Shear Modulus, GPa 40
40
Tensile Strength: Ultimate (UTS), MPa 280
380 to 520
Tensile Strength: Yield (Proof), MPa 150
160 to 390

Thermal Properties

Latent Heat of Fusion, J/g 190
170
Maximum Temperature: Mechanical, °C 170
130
Melting Completion (Liquidus), °C 1000
850
Melting Onset (Solidus), °C 900
800
Specific Heat Capacity, J/kg-K 370
380
Thermal Conductivity, W/m-K 73
110
Thermal Expansion, µm/m-K 18
20

Otherwise Unclassified Properties

Base Metal Price, % relative 33
25
Density, g/cm3 8.8
8.2
Embodied Carbon, kg CO2/kg material 3.4
2.8
Embodied Energy, MJ/kg 54
47
Embodied Water, L/kg 370
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 33
68 to 100
Resilience: Unit (Modulus of Resilience), kJ/m3 100
120 to 740
Stiffness to Weight: Axial, points 6.8
7.1
Stiffness to Weight: Bending, points 18
19
Strength to Weight: Axial, points 8.7
13 to 17
Strength to Weight: Bending, points 11
14 to 17
Thermal Diffusivity, mm2/s 23
36
Thermal Shock Resistance, points 10
13 to 17

Alloy Composition

Aluminum (Al), % 0 to 0.010
0
Antimony (Sb), % 0 to 0.25
0
Copper (Cu), % 83 to 89
63 to 66
Iron (Fe), % 0 to 0.2
0.1 to 1.0
Lead (Pb), % 2.5 to 3.5
1.0 to 2.0
Nickel (Ni), % 0 to 2.0
0.1 to 0.5
Phosphorus (P), % 0 to 0.1
0
Silicon (Si), % 0 to 0.010
0
Sulfur (S), % 0 to 0.1
0
Tin (Sn), % 6.0 to 8.0
1.2 to 2.0
Zinc (Zn), % 1.5 to 3.0
28.1 to 34.6
Residuals, % 0
0 to 0.4