MakeItFrom.com
Menu (ESC)

CC493K Bronze vs. SAE-AISI 1527 Steel

CC493K bronze belongs to the copper alloys classification, while SAE-AISI 1527 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is CC493K bronze and the bottom bar is SAE-AISI 1527 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 74
170 to 180
Elastic (Young's, Tensile) Modulus, GPa 100
190
Elongation at Break, % 14
13 to 21
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 39
73
Tensile Strength: Ultimate (UTS), MPa 270
590 to 640
Tensile Strength: Yield (Proof), MPa 140
320 to 550

Thermal Properties

Latent Heat of Fusion, J/g 180
250
Maximum Temperature: Mechanical, °C 160
400
Melting Completion (Liquidus), °C 960
1460
Melting Onset (Solidus), °C 880
1420
Specific Heat Capacity, J/kg-K 360
470
Thermal Conductivity, W/m-K 61
52
Thermal Expansion, µm/m-K 19
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 12
7.1
Electrical Conductivity: Equal Weight (Specific), % IACS 12
8.1

Otherwise Unclassified Properties

Base Metal Price, % relative 32
1.8
Density, g/cm3 8.9
7.8
Embodied Carbon, kg CO2/kg material 3.3
1.4
Embodied Energy, MJ/kg 53
19
Embodied Water, L/kg 370
47

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 33
82 to 100
Resilience: Unit (Modulus of Resilience), kJ/m3 89
260 to 800
Stiffness to Weight: Axial, points 6.5
13
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 8.6
21 to 23
Strength to Weight: Bending, points 11
20 to 21
Thermal Diffusivity, mm2/s 19
14
Thermal Shock Resistance, points 10
19 to 20

Alloy Composition

Aluminum (Al), % 0 to 0.010
0
Antimony (Sb), % 0 to 0.3
0
Carbon (C), % 0
0.22 to 0.29
Copper (Cu), % 79 to 86
0
Iron (Fe), % 0 to 0.2
98.1 to 98.6
Lead (Pb), % 5.0 to 8.0
0
Manganese (Mn), % 0
1.2 to 1.5
Nickel (Ni), % 0 to 2.0
0
Phosphorus (P), % 0 to 0.1
0 to 0.040
Silicon (Si), % 0 to 0.010
0
Sulfur (S), % 0 to 0.1
0 to 0.050
Tin (Sn), % 5.2 to 8.0
0
Zinc (Zn), % 2.0 to 5.0
0