MakeItFrom.com
Menu (ESC)

CC493K Bronze vs. N06920 Nickel

CC493K bronze belongs to the copper alloys classification, while N06920 nickel belongs to the nickel alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is CC493K bronze and the bottom bar is N06920 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
210
Elongation at Break, % 14
39
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 39
82
Tensile Strength: Ultimate (UTS), MPa 270
730
Tensile Strength: Yield (Proof), MPa 140
270

Thermal Properties

Latent Heat of Fusion, J/g 180
320
Maximum Temperature: Mechanical, °C 160
990
Melting Completion (Liquidus), °C 960
1500
Melting Onset (Solidus), °C 880
1440
Specific Heat Capacity, J/kg-K 360
440
Thermal Conductivity, W/m-K 61
11
Thermal Expansion, µm/m-K 19
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 12
1.5
Electrical Conductivity: Equal Weight (Specific), % IACS 12
1.6

Otherwise Unclassified Properties

Base Metal Price, % relative 32
55
Density, g/cm3 8.9
8.6
Embodied Carbon, kg CO2/kg material 3.3
9.4
Embodied Energy, MJ/kg 53
130
Embodied Water, L/kg 370
270

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 33
230
Resilience: Unit (Modulus of Resilience), kJ/m3 89
180
Stiffness to Weight: Axial, points 6.5
14
Stiffness to Weight: Bending, points 18
23
Strength to Weight: Axial, points 8.6
24
Strength to Weight: Bending, points 11
21
Thermal Diffusivity, mm2/s 19
2.8
Thermal Shock Resistance, points 10
19

Alloy Composition

Aluminum (Al), % 0 to 0.010
0
Antimony (Sb), % 0 to 0.3
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
20.5 to 23
Cobalt (Co), % 0
0 to 5.0
Copper (Cu), % 79 to 86
0
Iron (Fe), % 0 to 0.2
17 to 20
Lead (Pb), % 5.0 to 8.0
0
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
8.0 to 10
Nickel (Ni), % 0 to 2.0
36.9 to 53.5
Phosphorus (P), % 0 to 0.1
0 to 0.040
Silicon (Si), % 0 to 0.010
0 to 1.0
Sulfur (S), % 0 to 0.1
0 to 0.030
Tin (Sn), % 5.2 to 8.0
0
Tungsten (W), % 0
1.0 to 3.0
Zinc (Zn), % 2.0 to 5.0
0