MakeItFrom.com
Menu (ESC)

CC494K Bronze vs. AWS E33-31

CC494K bronze belongs to the copper alloys classification, while AWS E33-31 belongs to the iron alloys. There are 20 material properties with values for both materials. Properties with values for just one material (10, in this case) are not shown.

For each property being compared, the top bar is CC494K bronze and the bottom bar is AWS E33-31.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
210
Elongation at Break, % 7.6
29
Poisson's Ratio 0.35
0.27
Shear Modulus, GPa 39
81
Tensile Strength: Ultimate (UTS), MPa 210
810

Thermal Properties

Latent Heat of Fusion, J/g 180
320
Melting Completion (Liquidus), °C 970
1380
Melting Onset (Solidus), °C 890
1330
Specific Heat Capacity, J/kg-K 360
480
Thermal Expansion, µm/m-K 19
14

Otherwise Unclassified Properties

Base Metal Price, % relative 31
36
Density, g/cm3 9.1
7.9
Embodied Carbon, kg CO2/kg material 3.1
6.0
Embodied Energy, MJ/kg 50
86
Embodied Water, L/kg 360
260

Common Calculations

Stiffness to Weight: Axial, points 6.4
14
Stiffness to Weight: Bending, points 17
25
Strength to Weight: Axial, points 6.5
28
Strength to Weight: Bending, points 8.8
24
Thermal Shock Resistance, points 7.8
19

Alloy Composition

Aluminum (Al), % 0 to 0.010
0
Antimony (Sb), % 0 to 0.5
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
31 to 35
Copper (Cu), % 78 to 87
0.4 to 0.8
Iron (Fe), % 0 to 0.25
24.7 to 34.8
Lead (Pb), % 8.0 to 10
0
Manganese (Mn), % 0 to 0.2
2.5 to 4.0
Molybdenum (Mo), % 0
1.0 to 2.0
Nickel (Ni), % 0 to 2.0
30 to 32
Nitrogen (N), % 0
0.3 to 0.5
Phosphorus (P), % 0 to 0.1
0 to 0.020
Silicon (Si), % 0 to 0.010
0 to 0.9
Sulfur (S), % 0 to 0.1
0 to 0.010
Tin (Sn), % 4.0 to 6.0
0
Zinc (Zn), % 0 to 2.0
0