MakeItFrom.com
Menu (ESC)

CC494K Bronze vs. EN 1.4606 Stainless Steel

CC494K bronze belongs to the copper alloys classification, while EN 1.4606 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is CC494K bronze and the bottom bar is EN 1.4606 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
190
Elongation at Break, % 7.6
23 to 39
Poisson's Ratio 0.35
0.29
Shear Modulus, GPa 39
75
Tensile Strength: Ultimate (UTS), MPa 210
600 to 1020
Tensile Strength: Yield (Proof), MPa 94
280 to 630

Thermal Properties

Latent Heat of Fusion, J/g 180
300
Maximum Temperature: Mechanical, °C 160
910
Melting Completion (Liquidus), °C 970
1430
Melting Onset (Solidus), °C 890
1380
Specific Heat Capacity, J/kg-K 360
470
Thermal Conductivity, W/m-K 63
14
Thermal Expansion, µm/m-K 19
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 16
1.9
Electrical Conductivity: Equal Weight (Specific), % IACS 16
2.2

Otherwise Unclassified Properties

Base Metal Price, % relative 31
26
Density, g/cm3 9.1
7.9
Embodied Carbon, kg CO2/kg material 3.1
6.0
Embodied Energy, MJ/kg 50
87
Embodied Water, L/kg 360
170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 13
190 to 200
Resilience: Unit (Modulus of Resilience), kJ/m3 43
200 to 1010
Stiffness to Weight: Axial, points 6.4
14
Stiffness to Weight: Bending, points 17
24
Strength to Weight: Axial, points 6.5
21 to 36
Strength to Weight: Bending, points 8.8
20 to 28
Thermal Diffusivity, mm2/s 19
3.7
Thermal Shock Resistance, points 7.8
21 to 35

Alloy Composition

Aluminum (Al), % 0 to 0.010
0 to 0.35
Antimony (Sb), % 0 to 0.5
0
Boron (B), % 0
0.0010 to 0.010
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0
13 to 16
Copper (Cu), % 78 to 87
0
Iron (Fe), % 0 to 0.25
49.2 to 59
Lead (Pb), % 8.0 to 10
0
Manganese (Mn), % 0 to 0.2
1.0 to 2.0
Molybdenum (Mo), % 0
1.0 to 1.5
Nickel (Ni), % 0 to 2.0
24 to 27
Phosphorus (P), % 0 to 0.1
0 to 0.025
Silicon (Si), % 0 to 0.010
0 to 1.0
Sulfur (S), % 0 to 0.1
0 to 0.015
Tin (Sn), % 4.0 to 6.0
0
Titanium (Ti), % 0
1.9 to 2.3
Vanadium (V), % 0
0.1 to 0.5
Zinc (Zn), % 0 to 2.0
0