MakeItFrom.com
Menu (ESC)

CC494K Bronze vs. Nickel 600

CC494K bronze belongs to the copper alloys classification, while nickel 600 belongs to the nickel alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is CC494K bronze and the bottom bar is nickel 600.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
190
Elongation at Break, % 7.6
3.4 to 35
Poisson's Ratio 0.35
0.29
Shear Modulus, GPa 39
75
Tensile Strength: Ultimate (UTS), MPa 210
650 to 990
Tensile Strength: Yield (Proof), MPa 94
270 to 760

Thermal Properties

Latent Heat of Fusion, J/g 180
310
Maximum Temperature: Mechanical, °C 160
1100
Melting Completion (Liquidus), °C 970
1410
Melting Onset (Solidus), °C 890
1350
Specific Heat Capacity, J/kg-K 360
460
Thermal Conductivity, W/m-K 63
14
Thermal Expansion, µm/m-K 19
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 16
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 16
1.8

Otherwise Unclassified Properties

Base Metal Price, % relative 31
55
Density, g/cm3 9.1
8.5
Embodied Carbon, kg CO2/kg material 3.1
9.0
Embodied Energy, MJ/kg 50
130
Embodied Water, L/kg 360
250

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 13
31 to 180
Resilience: Unit (Modulus of Resilience), kJ/m3 43
190 to 1490
Stiffness to Weight: Axial, points 6.4
13
Stiffness to Weight: Bending, points 17
23
Strength to Weight: Axial, points 6.5
21 to 32
Strength to Weight: Bending, points 8.8
20 to 26
Thermal Diffusivity, mm2/s 19
3.6
Thermal Shock Resistance, points 7.8
19 to 29

Alloy Composition

Aluminum (Al), % 0 to 0.010
0
Antimony (Sb), % 0 to 0.5
0
Carbon (C), % 0
0 to 0.15
Chromium (Cr), % 0
14 to 17
Copper (Cu), % 78 to 87
0 to 0.5
Iron (Fe), % 0 to 0.25
6.0 to 10
Lead (Pb), % 8.0 to 10
0
Manganese (Mn), % 0 to 0.2
0 to 1.0
Nickel (Ni), % 0 to 2.0
72 to 80
Phosphorus (P), % 0 to 0.1
0
Silicon (Si), % 0 to 0.010
0 to 0.5
Sulfur (S), % 0 to 0.1
0 to 0.015
Tin (Sn), % 4.0 to 6.0
0
Zinc (Zn), % 0 to 2.0
0