MakeItFrom.com
Menu (ESC)

CC495K Bronze vs. AISI 334 Stainless Steel

CC495K bronze belongs to the copper alloys classification, while AISI 334 stainless steel belongs to the iron alloys. There are 25 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown.

For each property being compared, the top bar is CC495K bronze and the bottom bar is AISI 334 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 76
180
Elastic (Young's, Tensile) Modulus, GPa 100
200
Elongation at Break, % 7.0
34
Poisson's Ratio 0.35
0.28
Shear Modulus, GPa 37
77
Tensile Strength: Ultimate (UTS), MPa 240
540
Tensile Strength: Yield (Proof), MPa 120
190

Thermal Properties

Latent Heat of Fusion, J/g 180
290
Maximum Temperature: Mechanical, °C 140
1000
Melting Completion (Liquidus), °C 930
1410
Melting Onset (Solidus), °C 820
1370
Specific Heat Capacity, J/kg-K 350
480
Thermal Expansion, µm/m-K 19
16

Otherwise Unclassified Properties

Base Metal Price, % relative 33
22
Density, g/cm3 9.0
7.9
Embodied Carbon, kg CO2/kg material 3.6
4.1
Embodied Energy, MJ/kg 58
59
Embodied Water, L/kg 400
170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 14
140
Resilience: Unit (Modulus of Resilience), kJ/m3 68
96
Stiffness to Weight: Axial, points 6.2
14
Stiffness to Weight: Bending, points 17
25
Strength to Weight: Axial, points 7.3
19
Strength to Weight: Bending, points 9.4
19
Thermal Shock Resistance, points 8.8
12

Alloy Composition

Aluminum (Al), % 0 to 0.010
0.15 to 0.6
Antimony (Sb), % 0 to 0.5
0
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0
18 to 20
Copper (Cu), % 76 to 82
0
Iron (Fe), % 0 to 0.25
55.7 to 62.7
Lead (Pb), % 8.0 to 11
0
Manganese (Mn), % 0 to 0.2
0 to 1.0
Nickel (Ni), % 0 to 2.0
19 to 21
Phosphorus (P), % 0 to 0.1
0 to 0.030
Silicon (Si), % 0 to 0.010
0 to 1.0
Sulfur (S), % 0 to 0.1
0 to 0.015
Tin (Sn), % 9.0 to 11
0
Titanium (Ti), % 0
0.15 to 0.6
Zinc (Zn), % 0 to 2.0
0