MakeItFrom.com
Menu (ESC)

CC495K Bronze vs. EN 1.4606 Stainless Steel

CC495K bronze belongs to the copper alloys classification, while EN 1.4606 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is CC495K bronze and the bottom bar is EN 1.4606 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
190
Elongation at Break, % 7.0
23 to 39
Poisson's Ratio 0.35
0.29
Shear Modulus, GPa 37
75
Tensile Strength: Ultimate (UTS), MPa 240
600 to 1020
Tensile Strength: Yield (Proof), MPa 120
280 to 630

Thermal Properties

Latent Heat of Fusion, J/g 180
300
Maximum Temperature: Mechanical, °C 140
910
Melting Completion (Liquidus), °C 930
1430
Melting Onset (Solidus), °C 820
1380
Specific Heat Capacity, J/kg-K 350
470
Thermal Conductivity, W/m-K 48
14
Thermal Expansion, µm/m-K 19
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 10
1.9
Electrical Conductivity: Equal Weight (Specific), % IACS 10
2.2

Otherwise Unclassified Properties

Base Metal Price, % relative 33
26
Density, g/cm3 9.0
7.9
Embodied Carbon, kg CO2/kg material 3.6
6.0
Embodied Energy, MJ/kg 58
87
Embodied Water, L/kg 400
170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 14
190 to 200
Resilience: Unit (Modulus of Resilience), kJ/m3 68
200 to 1010
Stiffness to Weight: Axial, points 6.2
14
Stiffness to Weight: Bending, points 17
24
Strength to Weight: Axial, points 7.3
21 to 36
Strength to Weight: Bending, points 9.4
20 to 28
Thermal Diffusivity, mm2/s 15
3.7
Thermal Shock Resistance, points 8.8
21 to 35

Alloy Composition

Aluminum (Al), % 0 to 0.010
0 to 0.35
Antimony (Sb), % 0 to 0.5
0
Boron (B), % 0
0.0010 to 0.010
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0
13 to 16
Copper (Cu), % 76 to 82
0
Iron (Fe), % 0 to 0.25
49.2 to 59
Lead (Pb), % 8.0 to 11
0
Manganese (Mn), % 0 to 0.2
1.0 to 2.0
Molybdenum (Mo), % 0
1.0 to 1.5
Nickel (Ni), % 0 to 2.0
24 to 27
Phosphorus (P), % 0 to 0.1
0 to 0.025
Silicon (Si), % 0 to 0.010
0 to 1.0
Sulfur (S), % 0 to 0.1
0 to 0.015
Tin (Sn), % 9.0 to 11
0
Titanium (Ti), % 0
1.9 to 2.3
Vanadium (V), % 0
0.1 to 0.5
Zinc (Zn), % 0 to 2.0
0