MakeItFrom.com
Menu (ESC)

CC495K Bronze vs. EN 2.4878 Nickel

CC495K bronze belongs to the copper alloys classification, while EN 2.4878 nickel belongs to the nickel alloys. There are 26 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is CC495K bronze and the bottom bar is EN 2.4878 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
200
Elongation at Break, % 7.0
13 to 17
Poisson's Ratio 0.35
0.29
Shear Modulus, GPa 37
78
Tensile Strength: Ultimate (UTS), MPa 240
1210 to 1250
Tensile Strength: Yield (Proof), MPa 120
740 to 780

Thermal Properties

Latent Heat of Fusion, J/g 180
330
Maximum Temperature: Mechanical, °C 140
1030
Melting Completion (Liquidus), °C 930
1370
Melting Onset (Solidus), °C 820
1320
Specific Heat Capacity, J/kg-K 350
460
Thermal Conductivity, W/m-K 48
11
Thermal Expansion, µm/m-K 19
12

Otherwise Unclassified Properties

Base Metal Price, % relative 33
80
Density, g/cm3 9.0
8.3
Embodied Carbon, kg CO2/kg material 3.6
10
Embodied Energy, MJ/kg 58
150
Embodied Water, L/kg 400
370

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 14
150 to 180
Resilience: Unit (Modulus of Resilience), kJ/m3 68
1370 to 1540
Stiffness to Weight: Axial, points 6.2
13
Stiffness to Weight: Bending, points 17
24
Strength to Weight: Axial, points 7.3
41 to 42
Strength to Weight: Bending, points 9.4
31
Thermal Diffusivity, mm2/s 15
2.8
Thermal Shock Resistance, points 8.8
37 to 39

Alloy Composition

Aluminum (Al), % 0 to 0.010
1.2 to 1.6
Antimony (Sb), % 0 to 0.5
0
Boron (B), % 0
0.010 to 0.015
Carbon (C), % 0
0.030 to 0.070
Chromium (Cr), % 0
23 to 25
Cobalt (Co), % 0
19 to 21
Copper (Cu), % 76 to 82
0 to 0.2
Iron (Fe), % 0 to 0.25
0 to 1.0
Lead (Pb), % 8.0 to 11
0
Manganese (Mn), % 0 to 0.2
0 to 0.5
Molybdenum (Mo), % 0
1.0 to 2.0
Nickel (Ni), % 0 to 2.0
43.6 to 52.2
Niobium (Nb), % 0
0.7 to 1.2
Phosphorus (P), % 0 to 0.1
0 to 0.010
Silicon (Si), % 0 to 0.010
0 to 0.5
Sulfur (S), % 0 to 0.1
0 to 0.0070
Tantalum (Ta), % 0
0 to 0.050
Tin (Sn), % 9.0 to 11
0
Titanium (Ti), % 0
2.8 to 3.2
Zinc (Zn), % 0 to 2.0
0
Zirconium (Zr), % 0
0.030 to 0.070