MakeItFrom.com
Menu (ESC)

CC495K Bronze vs. K93050 Alloy

CC495K bronze belongs to the copper alloys classification, while K93050 alloy belongs to the iron alloys. There are 19 material properties with values for both materials. Properties with values for just one material (10, in this case) are not shown.

For each property being compared, the top bar is CC495K bronze and the bottom bar is K93050 alloy.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
190
Poisson's Ratio 0.35
0.3
Shear Modulus, GPa 37
72
Tensile Strength: Ultimate (UTS), MPa 240
500 to 680

Thermal Properties

Latent Heat of Fusion, J/g 180
270
Melting Completion (Liquidus), °C 930
1430
Melting Onset (Solidus), °C 820
1380
Specific Heat Capacity, J/kg-K 350
460
Thermal Expansion, µm/m-K 19
12

Otherwise Unclassified Properties

Base Metal Price, % relative 33
26
Density, g/cm3 9.0
8.2
Embodied Carbon, kg CO2/kg material 3.6
4.7
Embodied Energy, MJ/kg 58
65
Embodied Water, L/kg 400
120

Common Calculations

Stiffness to Weight: Axial, points 6.2
13
Stiffness to Weight: Bending, points 17
23
Strength to Weight: Axial, points 7.3
17 to 23
Strength to Weight: Bending, points 9.4
17 to 21
Thermal Shock Resistance, points 8.8
16 to 21

Alloy Composition

Aluminum (Al), % 0 to 0.010
0
Antimony (Sb), % 0 to 0.5
0
Carbon (C), % 0
0 to 0.15
Chromium (Cr), % 0
0 to 0.25
Cobalt (Co), % 0
0 to 0.5
Copper (Cu), % 76 to 82
0
Iron (Fe), % 0 to 0.25
61.4 to 63.9
Lead (Pb), % 8.0 to 11
0
Manganese (Mn), % 0 to 0.2
0 to 1.0
Nickel (Ni), % 0 to 2.0
36
Phosphorus (P), % 0 to 0.1
0 to 0.020
Selenium (Se), % 0
0.15 to 0.3
Silicon (Si), % 0 to 0.010
0 to 0.35
Sulfur (S), % 0 to 0.1
0 to 0.020
Tin (Sn), % 9.0 to 11
0
Zinc (Zn), % 0 to 2.0
0