MakeItFrom.com
Menu (ESC)

CC496K Bronze vs. Grade 6 Titanium

CC496K bronze belongs to the copper alloys classification, while grade 6 titanium belongs to the titanium alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is CC496K bronze and the bottom bar is grade 6 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 97
100
Elongation at Break, % 8.6
11
Poisson's Ratio 0.35
0.32
Shear Modulus, GPa 36
39
Tensile Strength: Ultimate (UTS), MPa 210
890
Tensile Strength: Yield (Proof), MPa 99
840

Thermal Properties

Latent Heat of Fusion, J/g 170
410
Maximum Temperature: Mechanical, °C 140
310
Melting Completion (Liquidus), °C 900
1580
Melting Onset (Solidus), °C 820
1530
Specific Heat Capacity, J/kg-K 340
550
Thermal Conductivity, W/m-K 52
7.8
Thermal Expansion, µm/m-K 19
9.4

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
1.2
Electrical Conductivity: Equal Weight (Specific), % IACS 11
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 31
36
Density, g/cm3 9.2
4.5
Embodied Carbon, kg CO2/kg material 3.3
30
Embodied Energy, MJ/kg 52
480
Embodied Water, L/kg 380
190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 15
92
Resilience: Unit (Modulus of Resilience), kJ/m3 50
3390
Stiffness to Weight: Axial, points 5.9
13
Stiffness to Weight: Bending, points 17
35
Strength to Weight: Axial, points 6.5
55
Strength to Weight: Bending, points 8.6
46
Thermal Diffusivity, mm2/s 17
3.2
Thermal Shock Resistance, points 8.1
65

Alloy Composition

Aluminum (Al), % 0 to 0.010
4.0 to 6.0
Antimony (Sb), % 0 to 0.5
0
Carbon (C), % 0
0 to 0.080
Copper (Cu), % 72 to 79.5
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 0 to 0.25
0 to 0.5
Lead (Pb), % 13 to 17
0
Manganese (Mn), % 0 to 0.2
0
Nickel (Ni), % 0.5 to 2.0
0
Nitrogen (N), % 0
0 to 0.030
Oxygen (O), % 0
0 to 0.2
Phosphorus (P), % 0 to 0.1
0
Silicon (Si), % 0 to 0.010
0
Sulfur (S), % 0 to 0.1
0
Tin (Sn), % 6.0 to 8.0
2.0 to 3.0
Titanium (Ti), % 0
89.8 to 94
Zinc (Zn), % 0 to 2.0
0
Residuals, % 0
0 to 0.4