MakeItFrom.com
Menu (ESC)

CC496K Bronze vs. SAE-AISI 1012 Steel

CC496K bronze belongs to the copper alloys classification, while SAE-AISI 1012 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is CC496K bronze and the bottom bar is SAE-AISI 1012 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 72
100 to 110
Elastic (Young's, Tensile) Modulus, GPa 97
190
Elongation at Break, % 8.6
21 to 31
Poisson's Ratio 0.35
0.29
Shear Modulus, GPa 36
73
Tensile Strength: Ultimate (UTS), MPa 210
360 to 400
Tensile Strength: Yield (Proof), MPa 99
200 to 330

Thermal Properties

Latent Heat of Fusion, J/g 170
250
Maximum Temperature: Mechanical, °C 140
400
Melting Completion (Liquidus), °C 900
1470
Melting Onset (Solidus), °C 820
1420
Specific Heat Capacity, J/kg-K 340
470
Thermal Conductivity, W/m-K 52
53
Thermal Expansion, µm/m-K 19
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
6.9
Electrical Conductivity: Equal Weight (Specific), % IACS 11
7.9

Otherwise Unclassified Properties

Base Metal Price, % relative 31
1.8
Density, g/cm3 9.2
7.9
Embodied Carbon, kg CO2/kg material 3.3
1.4
Embodied Energy, MJ/kg 52
18
Embodied Water, L/kg 380
45

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 15
80 to 93
Resilience: Unit (Modulus of Resilience), kJ/m3 50
110 to 300
Stiffness to Weight: Axial, points 5.9
13
Stiffness to Weight: Bending, points 17
24
Strength to Weight: Axial, points 6.5
13 to 14
Strength to Weight: Bending, points 8.6
14 to 15
Thermal Diffusivity, mm2/s 17
14
Thermal Shock Resistance, points 8.1
11 to 13

Alloy Composition

Aluminum (Al), % 0 to 0.010
0
Antimony (Sb), % 0 to 0.5
0
Carbon (C), % 0
0.1 to 0.15
Copper (Cu), % 72 to 79.5
0
Iron (Fe), % 0 to 0.25
99.16 to 99.6
Lead (Pb), % 13 to 17
0
Manganese (Mn), % 0 to 0.2
0.3 to 0.6
Nickel (Ni), % 0.5 to 2.0
0
Phosphorus (P), % 0 to 0.1
0 to 0.040
Silicon (Si), % 0 to 0.010
0
Sulfur (S), % 0 to 0.1
0 to 0.050
Tin (Sn), % 6.0 to 8.0
0
Zinc (Zn), % 0 to 2.0
0