MakeItFrom.com
Menu (ESC)

CC496K Bronze vs. C34500 Brass

Both CC496K bronze and C34500 brass are copper alloys. They have 67% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is CC496K bronze and the bottom bar is C34500 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 97
100
Elongation at Break, % 8.6
12 to 28
Poisson's Ratio 0.35
0.31
Shear Modulus, GPa 36
40
Tensile Strength: Ultimate (UTS), MPa 210
340 to 430
Tensile Strength: Yield (Proof), MPa 99
120 to 180

Thermal Properties

Latent Heat of Fusion, J/g 170
170
Maximum Temperature: Mechanical, °C 140
120
Melting Completion (Liquidus), °C 900
910
Melting Onset (Solidus), °C 820
890
Specific Heat Capacity, J/kg-K 340
380
Thermal Conductivity, W/m-K 52
120
Thermal Expansion, µm/m-K 19
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
26
Electrical Conductivity: Equal Weight (Specific), % IACS 11
29

Otherwise Unclassified Properties

Base Metal Price, % relative 31
24
Density, g/cm3 9.2
8.2
Embodied Carbon, kg CO2/kg material 3.3
2.6
Embodied Energy, MJ/kg 52
45
Embodied Water, L/kg 380
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 15
42 to 75
Resilience: Unit (Modulus of Resilience), kJ/m3 50
69 to 160
Stiffness to Weight: Axial, points 5.9
7.1
Stiffness to Weight: Bending, points 17
19
Strength to Weight: Axial, points 6.5
12 to 15
Strength to Weight: Bending, points 8.6
13 to 16
Thermal Diffusivity, mm2/s 17
37
Thermal Shock Resistance, points 8.1
11 to 14

Alloy Composition

Aluminum (Al), % 0 to 0.010
0
Antimony (Sb), % 0 to 0.5
0
Copper (Cu), % 72 to 79.5
62 to 65
Iron (Fe), % 0 to 0.25
0 to 0.15
Lead (Pb), % 13 to 17
1.5 to 2.5
Manganese (Mn), % 0 to 0.2
0
Nickel (Ni), % 0.5 to 2.0
0
Phosphorus (P), % 0 to 0.1
0
Silicon (Si), % 0 to 0.010
0
Sulfur (S), % 0 to 0.1
0
Tin (Sn), % 6.0 to 8.0
0
Zinc (Zn), % 0 to 2.0
32 to 36.5
Residuals, % 0
0 to 0.4