MakeItFrom.com
Menu (ESC)

CC498K Bronze vs. EN 1.4630 Stainless Steel

CC498K bronze belongs to the copper alloys classification, while EN 1.4630 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is CC498K bronze and the bottom bar is EN 1.4630 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 14
23
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 41
76
Tensile Strength: Ultimate (UTS), MPa 260
480
Tensile Strength: Yield (Proof), MPa 130
250

Thermal Properties

Latent Heat of Fusion, J/g 190
290
Maximum Temperature: Mechanical, °C 170
800
Melting Completion (Liquidus), °C 1000
1440
Melting Onset (Solidus), °C 920
1390
Specific Heat Capacity, J/kg-K 370
480
Thermal Conductivity, W/m-K 73
28
Thermal Expansion, µm/m-K 18
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 10
2.8
Electrical Conductivity: Equal Weight (Specific), % IACS 10
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 32
9.5
Density, g/cm3 8.8
7.7
Embodied Carbon, kg CO2/kg material 3.2
2.5
Embodied Energy, MJ/kg 52
36
Embodied Water, L/kg 360
120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 30
92
Resilience: Unit (Modulus of Resilience), kJ/m3 72
160
Stiffness to Weight: Axial, points 6.9
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 8.1
17
Strength to Weight: Bending, points 10
18
Thermal Diffusivity, mm2/s 22
7.5
Thermal Shock Resistance, points 9.3
17

Alloy Composition

Aluminum (Al), % 0 to 0.010
0 to 1.5
Antimony (Sb), % 0 to 0.25
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
13 to 16
Copper (Cu), % 85 to 90
0 to 0.5
Iron (Fe), % 0 to 0.25
77.1 to 86.7
Lead (Pb), % 1.0 to 2.0
0
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0 to 1.0
0 to 0.5
Niobium (Nb), % 0
0 to 0.5
Phosphorus (P), % 0 to 0.050
0 to 0.050
Silicon (Si), % 0 to 0.010
0.2 to 1.5
Sulfur (S), % 0 to 0.1
0 to 0.050
Tin (Sn), % 5.5 to 6.5
0
Titanium (Ti), % 0
0.15 to 0.8
Zinc (Zn), % 3.0 to 5.0
0