MakeItFrom.com
Menu (ESC)

CC498K Bronze vs. CR006A Copper

Both CC498K bronze and CR006A copper are copper alloys. Both are furnished in the as-fabricated (no temper or treatment) condition. They have 88% of their average alloy composition in common. There are 26 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is CC498K bronze and the bottom bar is CR006A copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
120
Elongation at Break, % 14
15
Poisson's Ratio 0.34
0.34
Shear Modulus, GPa 41
43
Tensile Strength: Ultimate (UTS), MPa 260
230
Tensile Strength: Yield (Proof), MPa 130
140

Thermal Properties

Latent Heat of Fusion, J/g 190
210
Maximum Temperature: Mechanical, °C 170
200
Melting Completion (Liquidus), °C 1000
1090
Melting Onset (Solidus), °C 920
1040
Specific Heat Capacity, J/kg-K 370
390
Thermal Conductivity, W/m-K 73
380
Thermal Expansion, µm/m-K 18
17

Otherwise Unclassified Properties

Base Metal Price, % relative 32
31
Density, g/cm3 8.8
9.0
Embodied Carbon, kg CO2/kg material 3.2
2.6
Embodied Energy, MJ/kg 52
41
Embodied Water, L/kg 360
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 30
31
Resilience: Unit (Modulus of Resilience), kJ/m3 72
83
Stiffness to Weight: Axial, points 6.9
7.2
Stiffness to Weight: Bending, points 18
18
Strength to Weight: Axial, points 8.1
7.1
Strength to Weight: Bending, points 10
9.3
Thermal Diffusivity, mm2/s 22
110
Thermal Shock Resistance, points 9.3
8.1

Alloy Composition

Aluminum (Al), % 0 to 0.010
0
Antimony (Sb), % 0 to 0.25
0
Copper (Cu), % 85 to 90
99.9 to 100
Iron (Fe), % 0 to 0.25
0
Lead (Pb), % 1.0 to 2.0
0
Nickel (Ni), % 0 to 1.0
0
Oxygen (O), % 0
0 to 0.1
Phosphorus (P), % 0 to 0.050
0
Silicon (Si), % 0 to 0.010
0
Silver (Ag), % 0
0 to 0.015
Sulfur (S), % 0 to 0.1
0
Tin (Sn), % 5.5 to 6.5
0
Zinc (Zn), % 3.0 to 5.0
0