MakeItFrom.com
Menu (ESC)

CC750S Brass vs. EN 2.4816 Nickel

CC750S brass belongs to the copper alloys classification, while EN 2.4816 nickel belongs to the nickel alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is CC750S brass and the bottom bar is EN 2.4816 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 54
170
Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 13
34
Poisson's Ratio 0.31
0.29
Shear Modulus, GPa 40
74
Tensile Strength: Ultimate (UTS), MPa 200
700
Tensile Strength: Yield (Proof), MPa 80
270

Thermal Properties

Latent Heat of Fusion, J/g 170
310
Maximum Temperature: Mechanical, °C 130
1150
Melting Completion (Liquidus), °C 860
1370
Melting Onset (Solidus), °C 810
1320
Specific Heat Capacity, J/kg-K 380
460
Thermal Conductivity, W/m-K 110
15
Thermal Expansion, µm/m-K 20
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 24
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 26
1.8

Otherwise Unclassified Properties

Base Metal Price, % relative 25
55
Density, g/cm3 8.2
8.5
Embodied Carbon, kg CO2/kg material 2.8
9.0
Embodied Energy, MJ/kg 46
130
Embodied Water, L/kg 330
260

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 22
190
Resilience: Unit (Modulus of Resilience), kJ/m3 30
190
Stiffness to Weight: Axial, points 7.1
13
Stiffness to Weight: Bending, points 19
23
Strength to Weight: Axial, points 6.8
23
Strength to Weight: Bending, points 9.3
21
Thermal Diffusivity, mm2/s 35
3.8
Thermal Shock Resistance, points 6.7
20

Alloy Composition

Aluminum (Al), % 0 to 0.1
0 to 0.3
Carbon (C), % 0
0.050 to 0.1
Chromium (Cr), % 0
14 to 17
Copper (Cu), % 62 to 67
0 to 0.5
Iron (Fe), % 0 to 0.8
6.0 to 10
Lead (Pb), % 1.0 to 3.0
0
Manganese (Mn), % 0 to 0.2
0 to 1.0
Nickel (Ni), % 0 to 1.0
72 to 80
Phosphorus (P), % 0 to 0.050
0 to 0.020
Silicon (Si), % 0 to 0.050
0 to 0.5
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 0 to 1.5
0
Titanium (Ti), % 0
0 to 0.3
Zinc (Zn), % 26.3 to 36
0