MakeItFrom.com
Menu (ESC)

CC750S Brass vs. C35300 Brass

Both CC750S brass and C35300 brass are copper alloys. They have a moderately high 95% of their average alloy composition in common. There are 24 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is CC750S brass and the bottom bar is C35300 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
100
Poisson's Ratio 0.31
0.31
Shear Modulus, GPa 40
39
Tensile Strength: Ultimate (UTS), MPa 200
340 to 650

Thermal Properties

Latent Heat of Fusion, J/g 170
170
Maximum Temperature: Mechanical, °C 130
120
Melting Completion (Liquidus), °C 860
910
Melting Onset (Solidus), °C 810
890
Specific Heat Capacity, J/kg-K 380
380
Thermal Conductivity, W/m-K 110
120
Thermal Expansion, µm/m-K 20
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 24
26
Electrical Conductivity: Equal Weight (Specific), % IACS 26
29

Otherwise Unclassified Properties

Base Metal Price, % relative 25
23
Density, g/cm3 8.2
8.1
Embodied Carbon, kg CO2/kg material 2.8
2.6
Embodied Energy, MJ/kg 46
45
Embodied Water, L/kg 330
320

Common Calculations

Stiffness to Weight: Axial, points 7.1
7.1
Stiffness to Weight: Bending, points 19
19
Strength to Weight: Axial, points 6.8
12 to 22
Strength to Weight: Bending, points 9.3
13 to 21
Thermal Diffusivity, mm2/s 35
38
Thermal Shock Resistance, points 6.7
11 to 22

Alloy Composition

Aluminum (Al), % 0 to 0.1
0
Copper (Cu), % 62 to 67
60 to 63
Iron (Fe), % 0 to 0.8
0 to 0.1
Lead (Pb), % 1.0 to 3.0
1.5 to 2.5
Manganese (Mn), % 0 to 0.2
0
Nickel (Ni), % 0 to 1.0
0
Phosphorus (P), % 0 to 0.050
0
Silicon (Si), % 0 to 0.050
0
Tin (Sn), % 0 to 1.5
0
Zinc (Zn), % 26.3 to 36
33.9 to 38.5
Residuals, % 0
0 to 0.5