MakeItFrom.com
Menu (ESC)

CC751S Brass vs. ASTM A387 Grade 21L Class 1

CC751S brass belongs to the copper alloys classification, while ASTM A387 grade 21L class 1 belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is CC751S brass and the bottom bar is ASTM A387 grade 21L class 1.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 130
150
Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 5.6
21
Poisson's Ratio 0.31
0.29
Shear Modulus, GPa 40
74
Tensile Strength: Ultimate (UTS), MPa 450
500
Tensile Strength: Yield (Proof), MPa 320
230

Thermal Properties

Latent Heat of Fusion, J/g 190
260
Maximum Temperature: Mechanical, °C 130
480
Melting Completion (Liquidus), °C 850
1470
Melting Onset (Solidus), °C 810
1430
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 110
41
Thermal Expansion, µm/m-K 20
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 25
7.6
Electrical Conductivity: Equal Weight (Specific), % IACS 28
8.8

Otherwise Unclassified Properties

Base Metal Price, % relative 24
4.1
Density, g/cm3 8.1
7.9
Embodied Carbon, kg CO2/kg material 2.8
1.8
Embodied Energy, MJ/kg 46
23
Embodied Water, L/kg 330
62

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 23
84
Resilience: Unit (Modulus of Resilience), kJ/m3 480
140
Stiffness to Weight: Axial, points 7.2
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 15
18
Strength to Weight: Bending, points 16
18
Thermal Diffusivity, mm2/s 35
11
Thermal Shock Resistance, points 15
14

Alloy Composition

Aluminum (Al), % 0 to 0.1
0
Antimony (Sb), % 0 to 0.5
0
Carbon (C), % 0
0 to 0.1
Chromium (Cr), % 0
2.8 to 3.3
Copper (Cu), % 62.7 to 66
0
Iron (Fe), % 0.25 to 0.5
94.4 to 96.1
Lead (Pb), % 0.8 to 2.2
0
Manganese (Mn), % 0 to 0.15
0.3 to 0.6
Molybdenum (Mo), % 0
0.9 to 1.1
Nickel (Ni), % 0 to 0.8
0
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0.65 to 1.1
0 to 0.5
Sulfur (S), % 0
0 to 0.025
Tin (Sn), % 0 to 0.8
0
Zinc (Zn), % 27.9 to 35.6
0