MakeItFrom.com
Menu (ESC)

CC751S Brass vs. ASTM B817 Type I

CC751S brass belongs to the copper alloys classification, while ASTM B817 type I belongs to the titanium alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is CC751S brass and the bottom bar is ASTM B817 type I.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
100
Elongation at Break, % 5.6
4.0 to 13
Poisson's Ratio 0.31
0.32
Shear Modulus, GPa 40
40
Tensile Strength: Ultimate (UTS), MPa 450
770 to 960
Tensile Strength: Yield (Proof), MPa 320
700 to 860

Thermal Properties

Latent Heat of Fusion, J/g 190
410
Maximum Temperature: Mechanical, °C 130
340
Melting Completion (Liquidus), °C 850
1600
Melting Onset (Solidus), °C 810
1550
Specific Heat Capacity, J/kg-K 390
560
Thermal Conductivity, W/m-K 110
7.1
Thermal Expansion, µm/m-K 20
9.6

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 25
1.0
Electrical Conductivity: Equal Weight (Specific), % IACS 28
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 24
36
Density, g/cm3 8.1
4.4
Embodied Carbon, kg CO2/kg material 2.8
38
Embodied Energy, MJ/kg 46
610
Embodied Water, L/kg 330
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 23
30 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 480
2310 to 3540
Stiffness to Weight: Axial, points 7.2
13
Stiffness to Weight: Bending, points 19
35
Strength to Weight: Axial, points 15
48 to 60
Strength to Weight: Bending, points 16
42 to 49
Thermal Diffusivity, mm2/s 35
2.9
Thermal Shock Resistance, points 15
54 to 68

Alloy Composition

Aluminum (Al), % 0 to 0.1
5.5 to 6.8
Antimony (Sb), % 0 to 0.5
0
Carbon (C), % 0
0 to 0.1
Chlorine (Cl), % 0
0 to 0.2
Copper (Cu), % 62.7 to 66
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 0.25 to 0.5
0 to 0.4
Lead (Pb), % 0.8 to 2.2
0
Manganese (Mn), % 0 to 0.15
0
Nickel (Ni), % 0 to 0.8
0
Nitrogen (N), % 0
0 to 0.040
Oxygen (O), % 0
0 to 0.3
Silicon (Si), % 0.65 to 1.1
0 to 0.1
Sodium (Na), % 0
0 to 0.2
Tin (Sn), % 0 to 0.8
0
Titanium (Ti), % 0
87 to 91
Vanadium (V), % 0
3.5 to 4.5
Zinc (Zn), % 27.9 to 35.6
0
Residuals, % 0
0 to 0.4