MakeItFrom.com
Menu (ESC)

CC751S Brass vs. CR003A Copper

Both CC751S brass and CR003A copper are copper alloys. Both are furnished in the as-fabricated (no temper or treatment) condition. They have 64% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is CC751S brass and the bottom bar is CR003A copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
120
Elongation at Break, % 5.6
15
Poisson's Ratio 0.31
0.34
Shear Modulus, GPa 40
43
Tensile Strength: Ultimate (UTS), MPa 450
230
Tensile Strength: Yield (Proof), MPa 320
140

Thermal Properties

Latent Heat of Fusion, J/g 190
210
Maximum Temperature: Mechanical, °C 130
200
Melting Completion (Liquidus), °C 850
1090
Melting Onset (Solidus), °C 810
1040
Specific Heat Capacity, J/kg-K 390
390
Thermal Conductivity, W/m-K 110
380
Thermal Expansion, µm/m-K 20
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 25
100
Electrical Conductivity: Equal Weight (Specific), % IACS 28
100

Otherwise Unclassified Properties

Base Metal Price, % relative 24
31
Density, g/cm3 8.1
9.0
Embodied Carbon, kg CO2/kg material 2.8
2.6
Embodied Energy, MJ/kg 46
41
Embodied Water, L/kg 330
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 23
31
Resilience: Unit (Modulus of Resilience), kJ/m3 480
83
Stiffness to Weight: Axial, points 7.2
7.2
Stiffness to Weight: Bending, points 19
18
Strength to Weight: Axial, points 15
7.1
Strength to Weight: Bending, points 16
9.3
Thermal Diffusivity, mm2/s 35
110
Thermal Shock Resistance, points 15
8.1

Alloy Composition

Aluminum (Al), % 0 to 0.1
0
Antimony (Sb), % 0 to 0.5
0 to 0.00040
Arsenic (As), % 0
0 to 0.00050
Bismuth (Bi), % 0
0 to 0.00020
Copper (Cu), % 62.7 to 66
99.954 to 100
Iron (Fe), % 0.25 to 0.5
0 to 0.0010
Lead (Pb), % 0.8 to 2.2
0 to 0.00050
Manganese (Mn), % 0 to 0.15
0
Nickel (Ni), % 0 to 0.8
0
Oxygen (O), % 0
0 to 0.040
Selenium (Se), % 0
0 to 0.00020
Silicon (Si), % 0.65 to 1.1
0
Silver (Ag), % 0
0 to 0.0025
Sulfur (S), % 0
0 to 0.0015
Tellurium (Te), % 0
0 to 0.00020
Tin (Sn), % 0 to 0.8
0
Zinc (Zn), % 27.9 to 35.6
0