MakeItFrom.com
Menu (ESC)

CC752S Brass vs. 5083 Aluminum

CC752S brass belongs to the copper alloys classification, while 5083 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is CC752S brass and the bottom bar is 5083 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 100
75 to 110
Elastic (Young's, Tensile) Modulus, GPa 100
68
Elongation at Break, % 8.4
1.1 to 17
Poisson's Ratio 0.31
0.33
Shear Modulus, GPa 40
26
Tensile Strength: Ultimate (UTS), MPa 350
290 to 390
Tensile Strength: Yield (Proof), MPa 190
110 to 340

Thermal Properties

Latent Heat of Fusion, J/g 170
400
Maximum Temperature: Mechanical, °C 130
190
Melting Completion (Liquidus), °C 840
640
Melting Onset (Solidus), °C 800
580
Specific Heat Capacity, J/kg-K 380
900
Thermal Conductivity, W/m-K 110
120
Thermal Expansion, µm/m-K 21
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 25
29
Electrical Conductivity: Equal Weight (Specific), % IACS 28
96

Otherwise Unclassified Properties

Base Metal Price, % relative 24
9.5
Density, g/cm3 8.1
2.7
Embodied Carbon, kg CO2/kg material 2.7
8.9
Embodied Energy, MJ/kg 46
150
Embodied Water, L/kg 330
1170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 25
4.2 to 42
Resilience: Unit (Modulus of Resilience), kJ/m3 180
95 to 860
Stiffness to Weight: Axial, points 7.1
14
Stiffness to Weight: Bending, points 19
50
Strength to Weight: Axial, points 12
29 to 40
Strength to Weight: Bending, points 13
36 to 44
Thermal Diffusivity, mm2/s 35
48
Thermal Shock Resistance, points 12
12 to 17

Alloy Composition

Aluminum (Al), % 0.3 to 0.7
92.4 to 95.6
Antimony (Sb), % 0 to 0.14
0
Arsenic (As), % 0.040 to 0.14
0
Chromium (Cr), % 0
0.050 to 0.25
Copper (Cu), % 61.5 to 64.5
0 to 0.1
Iron (Fe), % 0 to 0.3
0 to 0.4
Lead (Pb), % 1.5 to 2.2
0
Magnesium (Mg), % 0
4.0 to 4.9
Manganese (Mn), % 0 to 0.1
0.4 to 1.0
Nickel (Ni), % 0 to 0.2
0
Silicon (Si), % 0 to 0.020
0 to 0.4
Tin (Sn), % 0 to 0.3
0
Titanium (Ti), % 0
0 to 0.15
Zinc (Zn), % 31.5 to 36.7
0 to 0.25
Residuals, % 0
0 to 0.15