MakeItFrom.com
Menu (ESC)

CC752S Brass vs. 6013 Aluminum

CC752S brass belongs to the copper alloys classification, while 6013 aluminum belongs to the aluminum alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is CC752S brass and the bottom bar is 6013 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
69
Elongation at Break, % 8.4
3.4 to 22
Poisson's Ratio 0.31
0.33
Shear Modulus, GPa 40
26
Tensile Strength: Ultimate (UTS), MPa 350
310 to 410
Tensile Strength: Yield (Proof), MPa 190
170 to 350

Thermal Properties

Latent Heat of Fusion, J/g 170
410
Maximum Temperature: Mechanical, °C 130
160
Melting Completion (Liquidus), °C 840
650
Melting Onset (Solidus), °C 800
580
Specific Heat Capacity, J/kg-K 380
900
Thermal Conductivity, W/m-K 110
150
Thermal Expansion, µm/m-K 21
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 25
38
Electrical Conductivity: Equal Weight (Specific), % IACS 28
120

Otherwise Unclassified Properties

Base Metal Price, % relative 24
9.5
Density, g/cm3 8.1
2.8
Embodied Carbon, kg CO2/kg material 2.7
8.3
Embodied Energy, MJ/kg 46
150
Embodied Water, L/kg 330
1170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 25
13 to 58
Resilience: Unit (Modulus of Resilience), kJ/m3 180
200 to 900
Stiffness to Weight: Axial, points 7.1
14
Stiffness to Weight: Bending, points 19
49
Strength to Weight: Axial, points 12
31 to 41
Strength to Weight: Bending, points 13
37 to 44
Thermal Diffusivity, mm2/s 35
60
Thermal Shock Resistance, points 12
14 to 18

Alloy Composition

Aluminum (Al), % 0.3 to 0.7
94.8 to 97.8
Antimony (Sb), % 0 to 0.14
0
Arsenic (As), % 0.040 to 0.14
0
Chromium (Cr), % 0
0 to 0.1
Copper (Cu), % 61.5 to 64.5
0.6 to 1.1
Iron (Fe), % 0 to 0.3
0 to 0.5
Lead (Pb), % 1.5 to 2.2
0
Magnesium (Mg), % 0
0.8 to 1.2
Manganese (Mn), % 0 to 0.1
0.2 to 0.8
Nickel (Ni), % 0 to 0.2
0
Silicon (Si), % 0 to 0.020
0.6 to 1.0
Tin (Sn), % 0 to 0.3
0
Titanium (Ti), % 0
0 to 0.1
Zinc (Zn), % 31.5 to 36.7
0 to 0.25
Residuals, % 0
0 to 0.15