MakeItFrom.com
Menu (ESC)

CC752S Brass vs. ASTM A387 Grade 22L Class 1

CC752S brass belongs to the copper alloys classification, while ASTM A387 grade 22L class 1 belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is CC752S brass and the bottom bar is ASTM A387 grade 22L class 1.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 100
150
Elastic (Young's, Tensile) Modulus, GPa 100
190
Elongation at Break, % 8.4
20
Poisson's Ratio 0.31
0.29
Shear Modulus, GPa 40
74
Tensile Strength: Ultimate (UTS), MPa 350
500
Tensile Strength: Yield (Proof), MPa 190
230

Thermal Properties

Latent Heat of Fusion, J/g 170
260
Maximum Temperature: Mechanical, °C 130
460
Melting Completion (Liquidus), °C 840
1470
Melting Onset (Solidus), °C 800
1430
Specific Heat Capacity, J/kg-K 380
470
Thermal Conductivity, W/m-K 110
40
Thermal Expansion, µm/m-K 21
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 25
7.5
Electrical Conductivity: Equal Weight (Specific), % IACS 28
8.6

Otherwise Unclassified Properties

Base Metal Price, % relative 24
3.8
Density, g/cm3 8.1
7.9
Embodied Carbon, kg CO2/kg material 2.7
1.7
Embodied Energy, MJ/kg 46
23
Embodied Water, L/kg 330
58

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 25
83
Resilience: Unit (Modulus of Resilience), kJ/m3 180
140
Stiffness to Weight: Axial, points 7.1
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 12
18
Strength to Weight: Bending, points 13
18
Thermal Diffusivity, mm2/s 35
11
Thermal Shock Resistance, points 12
14

Alloy Composition

Aluminum (Al), % 0.3 to 0.7
0
Antimony (Sb), % 0 to 0.14
0
Arsenic (As), % 0.040 to 0.14
0
Carbon (C), % 0
0 to 0.1
Chromium (Cr), % 0
2.0 to 2.5
Copper (Cu), % 61.5 to 64.5
0
Iron (Fe), % 0 to 0.3
95.2 to 96.8
Lead (Pb), % 1.5 to 2.2
0
Manganese (Mn), % 0 to 0.1
0.3 to 0.6
Molybdenum (Mo), % 0
0.9 to 1.1
Nickel (Ni), % 0 to 0.2
0
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0 to 0.020
0 to 0.5
Sulfur (S), % 0
0 to 0.025
Tin (Sn), % 0 to 0.3
0
Zinc (Zn), % 31.5 to 36.7
0