MakeItFrom.com
Menu (ESC)

CC752S Brass vs. EN 1.6580 Steel

CC752S brass belongs to the copper alloys classification, while EN 1.6580 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is CC752S brass and the bottom bar is EN 1.6580 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 100
220 to 350
Elastic (Young's, Tensile) Modulus, GPa 100
190
Elongation at Break, % 8.4
11 to 19
Poisson's Ratio 0.31
0.29
Shear Modulus, GPa 40
73
Tensile Strength: Ultimate (UTS), MPa 350
720 to 1170
Tensile Strength: Yield (Proof), MPa 190
460 to 990

Thermal Properties

Latent Heat of Fusion, J/g 170
250
Maximum Temperature: Mechanical, °C 130
450
Melting Completion (Liquidus), °C 840
1460
Melting Onset (Solidus), °C 800
1420
Specific Heat Capacity, J/kg-K 380
470
Thermal Conductivity, W/m-K 110
40
Thermal Expansion, µm/m-K 21
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 25
7.8
Electrical Conductivity: Equal Weight (Specific), % IACS 28
8.9

Otherwise Unclassified Properties

Base Metal Price, % relative 24
4.3
Density, g/cm3 8.1
7.9
Embodied Carbon, kg CO2/kg material 2.7
1.8
Embodied Energy, MJ/kg 46
23
Embodied Water, L/kg 330
59

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 25
120 to 130
Resilience: Unit (Modulus of Resilience), kJ/m3 180
560 to 2590
Stiffness to Weight: Axial, points 7.1
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 12
26 to 41
Strength to Weight: Bending, points 13
23 to 31
Thermal Diffusivity, mm2/s 35
11
Thermal Shock Resistance, points 12
21 to 34

Alloy Composition

Aluminum (Al), % 0.3 to 0.7
0
Antimony (Sb), % 0 to 0.14
0
Arsenic (As), % 0.040 to 0.14
0
Carbon (C), % 0
0.26 to 0.34
Chromium (Cr), % 0
1.8 to 2.2
Copper (Cu), % 61.5 to 64.5
0
Iron (Fe), % 0 to 0.3
93.7 to 95.5
Lead (Pb), % 1.5 to 2.2
0
Manganese (Mn), % 0 to 0.1
0.3 to 0.6
Molybdenum (Mo), % 0
0.3 to 0.5
Nickel (Ni), % 0 to 0.2
1.8 to 2.2
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0 to 0.020
0 to 0.4
Sulfur (S), % 0
0 to 0.035
Tin (Sn), % 0 to 0.3
0
Zinc (Zn), % 31.5 to 36.7
0