MakeItFrom.com
Menu (ESC)

CC752S Brass vs. SAE-AISI 4340 Steel

CC752S brass belongs to the copper alloys classification, while SAE-AISI 4340 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is CC752S brass and the bottom bar is SAE-AISI 4340 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 100
210 to 360
Elastic (Young's, Tensile) Modulus, GPa 100
190
Elongation at Break, % 8.4
12 to 22
Poisson's Ratio 0.31
0.29
Shear Modulus, GPa 40
73
Tensile Strength: Ultimate (UTS), MPa 350
690 to 1280
Tensile Strength: Yield (Proof), MPa 190
470 to 1150

Thermal Properties

Latent Heat of Fusion, J/g 170
250
Maximum Temperature: Mechanical, °C 130
430
Melting Completion (Liquidus), °C 840
1460
Melting Onset (Solidus), °C 800
1420
Specific Heat Capacity, J/kg-K 380
470
Thermal Conductivity, W/m-K 110
44
Thermal Expansion, µm/m-K 21
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 25
7.5
Electrical Conductivity: Equal Weight (Specific), % IACS 28
8.6

Otherwise Unclassified Properties

Base Metal Price, % relative 24
3.5
Density, g/cm3 8.1
7.8
Embodied Carbon, kg CO2/kg material 2.7
1.7
Embodied Energy, MJ/kg 46
22
Embodied Water, L/kg 330
53

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 25
79 to 170
Resilience: Unit (Modulus of Resilience), kJ/m3 180
590 to 3490
Stiffness to Weight: Axial, points 7.1
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 12
24 to 45
Strength to Weight: Bending, points 13
22 to 33
Thermal Diffusivity, mm2/s 35
12
Thermal Shock Resistance, points 12
20 to 38

Alloy Composition

Aluminum (Al), % 0.3 to 0.7
0
Antimony (Sb), % 0 to 0.14
0
Arsenic (As), % 0.040 to 0.14
0
Carbon (C), % 0
0.38 to 0.43
Chromium (Cr), % 0
0.7 to 0.9
Copper (Cu), % 61.5 to 64.5
0
Iron (Fe), % 0 to 0.3
95.1 to 96.3
Lead (Pb), % 1.5 to 2.2
0
Manganese (Mn), % 0 to 0.1
0.6 to 0.8
Molybdenum (Mo), % 0
0.2 to 0.3
Nickel (Ni), % 0 to 0.2
1.7 to 2.0
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0 to 0.020
0.15 to 0.35
Sulfur (S), % 0
0 to 0.040
Tin (Sn), % 0 to 0.3
0
Zinc (Zn), % 31.5 to 36.7
0