MakeItFrom.com
Menu (ESC)

CC752S Brass vs. S34565 Stainless Steel

CC752S brass belongs to the copper alloys classification, while S34565 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is CC752S brass and the bottom bar is S34565 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 100
200
Elastic (Young's, Tensile) Modulus, GPa 100
210
Elongation at Break, % 8.4
39
Poisson's Ratio 0.31
0.28
Shear Modulus, GPa 40
80
Tensile Strength: Ultimate (UTS), MPa 350
900
Tensile Strength: Yield (Proof), MPa 190
470

Thermal Properties

Latent Heat of Fusion, J/g 170
310
Maximum Temperature: Mechanical, °C 130
1100
Melting Completion (Liquidus), °C 840
1420
Melting Onset (Solidus), °C 800
1380
Specific Heat Capacity, J/kg-K 380
470
Thermal Conductivity, W/m-K 110
12
Thermal Expansion, µm/m-K 21
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 25
1.9
Electrical Conductivity: Equal Weight (Specific), % IACS 28
2.1

Otherwise Unclassified Properties

Base Metal Price, % relative 24
28
Density, g/cm3 8.1
7.9
Embodied Carbon, kg CO2/kg material 2.7
5.3
Embodied Energy, MJ/kg 46
73
Embodied Water, L/kg 330
210

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 25
300
Resilience: Unit (Modulus of Resilience), kJ/m3 180
540
Stiffness to Weight: Axial, points 7.1
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 12
32
Strength to Weight: Bending, points 13
26
Thermal Diffusivity, mm2/s 35
3.2
Thermal Shock Resistance, points 12
22

Alloy Composition

Aluminum (Al), % 0.3 to 0.7
0
Antimony (Sb), % 0 to 0.14
0
Arsenic (As), % 0.040 to 0.14
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
23 to 25
Copper (Cu), % 61.5 to 64.5
0
Iron (Fe), % 0 to 0.3
43.2 to 51.6
Lead (Pb), % 1.5 to 2.2
0
Manganese (Mn), % 0 to 0.1
5.0 to 7.0
Molybdenum (Mo), % 0
4.0 to 5.0
Nickel (Ni), % 0 to 0.2
16 to 18
Niobium (Nb), % 0
0 to 0.1
Nitrogen (N), % 0
0.4 to 0.6
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0 to 0.020
0 to 1.0
Sulfur (S), % 0
0 to 0.010
Tin (Sn), % 0 to 0.3
0
Zinc (Zn), % 31.5 to 36.7
0