MakeItFrom.com
Menu (ESC)

CC753S Brass vs. SAE-AISI 4140 Steel

CC753S brass belongs to the copper alloys classification, while SAE-AISI 4140 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is CC753S brass and the bottom bar is SAE-AISI 4140 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 100
200 to 310
Elastic (Young's, Tensile) Modulus, GPa 100
190
Elongation at Break, % 17
11 to 26
Poisson's Ratio 0.31
0.29
Shear Modulus, GPa 40
73
Tensile Strength: Ultimate (UTS), MPa 340
690 to 1080
Tensile Strength: Yield (Proof), MPa 170
590 to 990

Thermal Properties

Latent Heat of Fusion, J/g 170
250
Maximum Temperature: Mechanical, °C 120
420
Melting Completion (Liquidus), °C 820
1460
Melting Onset (Solidus), °C 780
1420
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 99
43
Thermal Expansion, µm/m-K 21
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 26
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 29
8.4

Otherwise Unclassified Properties

Base Metal Price, % relative 23
2.4
Density, g/cm3 8.1
7.8
Embodied Carbon, kg CO2/kg material 2.8
1.5
Embodied Energy, MJ/kg 47
20
Embodied Water, L/kg 330
51

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 47
74 to 180
Resilience: Unit (Modulus of Resilience), kJ/m3 140
920 to 2590
Stiffness to Weight: Axial, points 7.1
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 12
25 to 38
Strength to Weight: Bending, points 13
22 to 30
Thermal Diffusivity, mm2/s 32
12
Thermal Shock Resistance, points 11
20 to 32

Alloy Composition

Aluminum (Al), % 0.4 to 0.8
0
Antimony (Sb), % 0 to 0.050
0
Carbon (C), % 0
0.38 to 0.43
Chromium (Cr), % 0
0.8 to 1.1
Copper (Cu), % 56.8 to 60.5
0
Iron (Fe), % 0.5 to 0.8
96.8 to 97.8
Lead (Pb), % 1.8 to 2.5
0
Manganese (Mn), % 0 to 0.2
0.75 to 1.0
Molybdenum (Mo), % 0
0.15 to 0.25
Nickel (Ni), % 0.5 to 1.2
0
Phosphorus (P), % 0 to 0.020
0 to 0.035
Silicon (Si), % 0 to 0.050
0.15 to 0.35
Sulfur (S), % 0
0 to 0.040
Tin (Sn), % 0 to 0.8
0
Zinc (Zn), % 33.1 to 40
0