MakeItFrom.com
Menu (ESC)

CC753S Brass vs. SAE-AISI 8620 Steel

CC753S brass belongs to the copper alloys classification, while SAE-AISI 8620 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is CC753S brass and the bottom bar is SAE-AISI 8620 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 100
150 to 210
Elastic (Young's, Tensile) Modulus, GPa 100
190
Elongation at Break, % 17
13 to 31
Poisson's Ratio 0.31
0.29
Shear Modulus, GPa 40
73
Tensile Strength: Ultimate (UTS), MPa 340
520 to 690
Tensile Strength: Yield (Proof), MPa 170
360 to 570

Thermal Properties

Latent Heat of Fusion, J/g 170
250
Maximum Temperature: Mechanical, °C 120
410
Melting Completion (Liquidus), °C 820
1460
Melting Onset (Solidus), °C 780
1420
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 99
39
Thermal Expansion, µm/m-K 21
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 26
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 29
8.3

Otherwise Unclassified Properties

Base Metal Price, % relative 23
2.6
Density, g/cm3 8.1
7.8
Embodied Carbon, kg CO2/kg material 2.8
1.5
Embodied Energy, MJ/kg 47
20
Embodied Water, L/kg 330
50

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 47
86 to 150
Resilience: Unit (Modulus of Resilience), kJ/m3 140
340 to 880
Stiffness to Weight: Axial, points 7.1
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 12
18 to 24
Strength to Weight: Bending, points 13
18 to 22
Thermal Diffusivity, mm2/s 32
10
Thermal Shock Resistance, points 11
15 to 20

Alloy Composition

Aluminum (Al), % 0.4 to 0.8
0
Antimony (Sb), % 0 to 0.050
0
Carbon (C), % 0
0.18 to 0.23
Chromium (Cr), % 0
0.4 to 0.6
Copper (Cu), % 56.8 to 60.5
0
Iron (Fe), % 0.5 to 0.8
96.9 to 98
Lead (Pb), % 1.8 to 2.5
0
Manganese (Mn), % 0 to 0.2
0.7 to 0.9
Molybdenum (Mo), % 0
0.15 to 0.25
Nickel (Ni), % 0.5 to 1.2
0.4 to 0.7
Phosphorus (P), % 0 to 0.020
0 to 0.035
Silicon (Si), % 0 to 0.050
0.15 to 0.35
Sulfur (S), % 0
0 to 0.040
Tin (Sn), % 0 to 0.8
0
Zinc (Zn), % 33.1 to 40
0