MakeItFrom.com
Menu (ESC)

CC753S Brass vs. C37000 Muntz Metal

Both CC753S brass and C37000 Muntz Metal are copper alloys. Both are furnished in the as-fabricated (no temper or treatment) condition. They have a very high 96% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is CC753S brass and the bottom bar is C37000 Muntz Metal.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
100
Elongation at Break, % 17
40
Poisson's Ratio 0.31
0.31
Shear Modulus, GPa 40
39
Tensile Strength: Ultimate (UTS), MPa 340
400
Tensile Strength: Yield (Proof), MPa 170
160

Thermal Properties

Latent Heat of Fusion, J/g 170
170
Maximum Temperature: Mechanical, °C 120
120
Melting Completion (Liquidus), °C 820
900
Melting Onset (Solidus), °C 780
890
Specific Heat Capacity, J/kg-K 390
380
Thermal Conductivity, W/m-K 99
120
Thermal Expansion, µm/m-K 21
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 26
27
Electrical Conductivity: Equal Weight (Specific), % IACS 29
30

Otherwise Unclassified Properties

Base Metal Price, % relative 23
23
Density, g/cm3 8.1
8.1
Embodied Carbon, kg CO2/kg material 2.8
2.7
Embodied Energy, MJ/kg 47
45
Embodied Water, L/kg 330
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 47
130
Resilience: Unit (Modulus of Resilience), kJ/m3 140
120
Stiffness to Weight: Axial, points 7.1
7.2
Stiffness to Weight: Bending, points 19
19
Strength to Weight: Axial, points 12
14
Strength to Weight: Bending, points 13
15
Thermal Diffusivity, mm2/s 32
39
Thermal Shock Resistance, points 11
13

Alloy Composition

Aluminum (Al), % 0.4 to 0.8
0
Antimony (Sb), % 0 to 0.050
0
Copper (Cu), % 56.8 to 60.5
59 to 62
Iron (Fe), % 0.5 to 0.8
0 to 0.15
Lead (Pb), % 1.8 to 2.5
0.8 to 1.5
Manganese (Mn), % 0 to 0.2
0
Nickel (Ni), % 0.5 to 1.2
0
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 0.050
0
Tin (Sn), % 0 to 0.8
0
Zinc (Zn), % 33.1 to 40
36 to 40.2
Residuals, % 0
0 to 0.4