MakeItFrom.com
Menu (ESC)

CC754S Brass vs. AWS E90C-B9

CC754S brass belongs to the copper alloys classification, while AWS E90C-B9 belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is CC754S brass and the bottom bar is AWS E90C-B9.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
190
Elongation at Break, % 11
18
Poisson's Ratio 0.31
0.28
Shear Modulus, GPa 40
75
Tensile Strength: Ultimate (UTS), MPa 320
710
Tensile Strength: Yield (Proof), MPa 160
460

Thermal Properties

Latent Heat of Fusion, J/g 170
270
Melting Completion (Liquidus), °C 830
1460
Melting Onset (Solidus), °C 780
1410
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 95
25
Thermal Expansion, µm/m-K 21
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 27
6.9
Electrical Conductivity: Equal Weight (Specific), % IACS 30
8.0

Otherwise Unclassified Properties

Base Metal Price, % relative 23
7.0
Density, g/cm3 8.1
7.8
Embodied Carbon, kg CO2/kg material 2.8
2.6
Embodied Energy, MJ/kg 47
37
Embodied Water, L/kg 330
91

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 29
110
Resilience: Unit (Modulus of Resilience), kJ/m3 130
550
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 11
25
Strength to Weight: Bending, points 13
23
Thermal Diffusivity, mm2/s 31
6.9
Thermal Shock Resistance, points 10
20

Alloy Composition

Aluminum (Al), % 0 to 0.8
0 to 0.040
Carbon (C), % 0
0.080 to 0.13
Chromium (Cr), % 0
8.0 to 10.5
Copper (Cu), % 57 to 63
0 to 0.2
Iron (Fe), % 0 to 0.7
84.4 to 90.9
Lead (Pb), % 0.5 to 2.5
0
Manganese (Mn), % 0 to 0.5
0 to 1.2
Molybdenum (Mo), % 0
0.85 to 1.2
Nickel (Ni), % 0 to 1.0
0 to 0.8
Niobium (Nb), % 0
0.020 to 0.1
Nitrogen (N), % 0
0.030 to 0.070
Phosphorus (P), % 0 to 0.020
0 to 0.020
Silicon (Si), % 0 to 0.3
0 to 0.5
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 0 to 1.0
0
Vanadium (V), % 0
0.15 to 0.3
Zinc (Zn), % 30.2 to 42.5
0
Residuals, % 0
0 to 0.5