MakeItFrom.com
Menu (ESC)

CC754S Brass vs. Grade 29 Titanium

CC754S brass belongs to the copper alloys classification, while grade 29 titanium belongs to the titanium alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is CC754S brass and the bottom bar is grade 29 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
110
Elongation at Break, % 11
6.8 to 11
Poisson's Ratio 0.31
0.32
Shear Modulus, GPa 40
40
Tensile Strength: Ultimate (UTS), MPa 320
930 to 940
Tensile Strength: Yield (Proof), MPa 160
850 to 870

Thermal Properties

Latent Heat of Fusion, J/g 170
410
Maximum Temperature: Mechanical, °C 120
340
Melting Completion (Liquidus), °C 830
1610
Melting Onset (Solidus), °C 780
1560
Specific Heat Capacity, J/kg-K 390
560
Thermal Conductivity, W/m-K 95
7.3
Thermal Expansion, µm/m-K 21
9.3

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 27
1.0
Electrical Conductivity: Equal Weight (Specific), % IACS 30
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 23
36
Density, g/cm3 8.1
4.5
Embodied Carbon, kg CO2/kg material 2.8
39
Embodied Energy, MJ/kg 47
640
Embodied Water, L/kg 330
410

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 29
62 to 100
Resilience: Unit (Modulus of Resilience), kJ/m3 130
3420 to 3540
Stiffness to Weight: Axial, points 7.2
13
Stiffness to Weight: Bending, points 19
35
Strength to Weight: Axial, points 11
58 to 59
Strength to Weight: Bending, points 13
47 to 48
Thermal Diffusivity, mm2/s 31
2.9
Thermal Shock Resistance, points 10
68 to 69

Alloy Composition

Aluminum (Al), % 0 to 0.8
5.5 to 6.5
Carbon (C), % 0
0 to 0.080
Copper (Cu), % 57 to 63
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 0 to 0.7
0 to 0.25
Lead (Pb), % 0.5 to 2.5
0
Manganese (Mn), % 0 to 0.5
0
Nickel (Ni), % 0 to 1.0
0
Nitrogen (N), % 0
0 to 0.030
Oxygen (O), % 0
0 to 0.13
Phosphorus (P), % 0 to 0.020
0
Ruthenium (Ru), % 0
0.080 to 0.14
Silicon (Si), % 0 to 0.3
0
Tin (Sn), % 0 to 1.0
0
Titanium (Ti), % 0
88 to 90.9
Vanadium (V), % 0
3.5 to 4.5
Zinc (Zn), % 30.2 to 42.5
0
Residuals, % 0
0 to 0.4