MakeItFrom.com
Menu (ESC)

CC754S Brass vs. Grade Ti-Pd18 Titanium

CC754S brass belongs to the copper alloys classification, while grade Ti-Pd18 titanium belongs to the titanium alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is CC754S brass and the bottom bar is grade Ti-Pd18 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 90
320
Elastic (Young's, Tensile) Modulus, GPa 100
110
Elongation at Break, % 11
17
Poisson's Ratio 0.31
0.32
Shear Modulus, GPa 40
40
Tensile Strength: Ultimate (UTS), MPa 320
710
Tensile Strength: Yield (Proof), MPa 160
540

Thermal Properties

Latent Heat of Fusion, J/g 170
410
Maximum Temperature: Mechanical, °C 120
330
Melting Completion (Liquidus), °C 830
1640
Melting Onset (Solidus), °C 780
1590
Specific Heat Capacity, J/kg-K 390
550
Thermal Conductivity, W/m-K 95
8.2
Thermal Expansion, µm/m-K 21
9.1

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 27
1.4
Electrical Conductivity: Equal Weight (Specific), % IACS 30
2.7

Otherwise Unclassified Properties

Density, g/cm3 8.1
4.5
Embodied Carbon, kg CO2/kg material 2.8
41
Embodied Energy, MJ/kg 47
670
Embodied Water, L/kg 330
270

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 29
110
Resilience: Unit (Modulus of Resilience), kJ/m3 130
1380
Stiffness to Weight: Axial, points 7.2
13
Stiffness to Weight: Bending, points 19
35
Strength to Weight: Axial, points 11
44
Strength to Weight: Bending, points 13
39
Thermal Diffusivity, mm2/s 31
3.3
Thermal Shock Resistance, points 10
52

Alloy Composition

Aluminum (Al), % 0 to 0.8
2.5 to 3.5
Carbon (C), % 0
0 to 0.1
Copper (Cu), % 57 to 63
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 0 to 0.7
0 to 0.25
Lead (Pb), % 0.5 to 2.5
0
Manganese (Mn), % 0 to 0.5
0
Nickel (Ni), % 0 to 1.0
0 to 0.050
Oxygen (O), % 0
0 to 0.15
Palladium (Pd), % 0
0.040 to 0.080
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 0.3
0
Tin (Sn), % 0 to 1.0
0
Titanium (Ti), % 0
92.5 to 95.5
Vanadium (V), % 0
2.0 to 3.0
Zinc (Zn), % 30.2 to 42.5
0
Residuals, % 0
0 to 0.4