MakeItFrom.com
Menu (ESC)

CC754S Brass vs. SAE-AISI 1548 Steel

CC754S brass belongs to the copper alloys classification, while SAE-AISI 1548 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is CC754S brass and the bottom bar is SAE-AISI 1548 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 90
220 to 250
Elastic (Young's, Tensile) Modulus, GPa 100
190
Elongation at Break, % 11
11 to 16
Poisson's Ratio 0.31
0.29
Shear Modulus, GPa 40
72
Tensile Strength: Ultimate (UTS), MPa 320
730 to 830
Tensile Strength: Yield (Proof), MPa 160
420 to 690

Thermal Properties

Latent Heat of Fusion, J/g 170
250
Maximum Temperature: Mechanical, °C 120
400
Melting Completion (Liquidus), °C 830
1460
Melting Onset (Solidus), °C 780
1420
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 95
51
Thermal Expansion, µm/m-K 21
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 27
7.1
Electrical Conductivity: Equal Weight (Specific), % IACS 30
8.1

Otherwise Unclassified Properties

Base Metal Price, % relative 23
1.8
Density, g/cm3 8.1
7.8
Embodied Carbon, kg CO2/kg material 2.8
1.4
Embodied Energy, MJ/kg 47
19
Embodied Water, L/kg 330
47

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 29
79 to 99
Resilience: Unit (Modulus of Resilience), kJ/m3 130
470 to 1280
Stiffness to Weight: Axial, points 7.2
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 11
26 to 30
Strength to Weight: Bending, points 13
23 to 25
Thermal Diffusivity, mm2/s 31
14
Thermal Shock Resistance, points 10
23 to 27

Alloy Composition

Aluminum (Al), % 0 to 0.8
0
Carbon (C), % 0
0.44 to 0.52
Copper (Cu), % 57 to 63
0
Iron (Fe), % 0 to 0.7
98 to 98.5
Lead (Pb), % 0.5 to 2.5
0
Manganese (Mn), % 0 to 0.5
1.1 to 1.4
Nickel (Ni), % 0 to 1.0
0
Phosphorus (P), % 0 to 0.020
0 to 0.040
Silicon (Si), % 0 to 0.3
0
Sulfur (S), % 0
0 to 0.050
Tin (Sn), % 0 to 1.0
0
Zinc (Zn), % 30.2 to 42.5
0