MakeItFrom.com
Menu (ESC)

CC754S Brass vs. C34000 Brass

Both CC754S brass and C34000 brass are copper alloys. They have a very high 96% of their average alloy composition in common. There are 24 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is CC754S brass and the bottom bar is C34000 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
100
Poisson's Ratio 0.31
0.31
Shear Modulus, GPa 40
40
Tensile Strength: Ultimate (UTS), MPa 320
340 to 650

Thermal Properties

Latent Heat of Fusion, J/g 170
170
Maximum Temperature: Mechanical, °C 120
120
Melting Completion (Liquidus), °C 830
930
Melting Onset (Solidus), °C 780
890
Specific Heat Capacity, J/kg-K 390
380
Thermal Conductivity, W/m-K 95
120
Thermal Expansion, µm/m-K 21
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 27
26
Electrical Conductivity: Equal Weight (Specific), % IACS 30
29

Otherwise Unclassified Properties

Base Metal Price, % relative 23
24
Density, g/cm3 8.1
8.1
Embodied Carbon, kg CO2/kg material 2.8
2.6
Embodied Energy, MJ/kg 47
45
Embodied Water, L/kg 330
320

Common Calculations

Stiffness to Weight: Axial, points 7.2
7.1
Stiffness to Weight: Bending, points 19
19
Strength to Weight: Axial, points 11
11 to 22
Strength to Weight: Bending, points 13
13 to 21
Thermal Diffusivity, mm2/s 31
37
Thermal Shock Resistance, points 10
11 to 22

Alloy Composition

Aluminum (Al), % 0 to 0.8
0
Copper (Cu), % 57 to 63
62 to 65
Iron (Fe), % 0 to 0.7
0 to 0.1
Lead (Pb), % 0.5 to 2.5
0.8 to 1.5
Manganese (Mn), % 0 to 0.5
0
Nickel (Ni), % 0 to 1.0
0
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 0.3
0
Tin (Sn), % 0 to 1.0
0
Zinc (Zn), % 30.2 to 42.5
33 to 37.2
Residuals, % 0
0 to 0.4