MakeItFrom.com
Menu (ESC)

CC754S Brass vs. S40975 Stainless Steel

CC754S brass belongs to the copper alloys classification, while S40975 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is CC754S brass and the bottom bar is S40975 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 90
170
Elastic (Young's, Tensile) Modulus, GPa 100
190
Elongation at Break, % 11
22
Poisson's Ratio 0.31
0.28
Shear Modulus, GPa 40
75
Tensile Strength: Ultimate (UTS), MPa 320
460
Tensile Strength: Yield (Proof), MPa 160
310

Thermal Properties

Latent Heat of Fusion, J/g 170
270
Maximum Temperature: Mechanical, °C 120
710
Melting Completion (Liquidus), °C 830
1450
Melting Onset (Solidus), °C 780
1400
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 95
26
Thermal Expansion, µm/m-K 21
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 27
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 30
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 23
6.5
Density, g/cm3 8.1
7.8
Embodied Carbon, kg CO2/kg material 2.8
2.0
Embodied Energy, MJ/kg 47
28
Embodied Water, L/kg 330
95

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 29
93
Resilience: Unit (Modulus of Resilience), kJ/m3 130
250
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 11
17
Strength to Weight: Bending, points 13
17
Thermal Diffusivity, mm2/s 31
7.0
Thermal Shock Resistance, points 10
17

Alloy Composition

Aluminum (Al), % 0 to 0.8
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
10.5 to 11.7
Copper (Cu), % 57 to 63
0
Iron (Fe), % 0 to 0.7
84.4 to 89
Lead (Pb), % 0.5 to 2.5
0
Manganese (Mn), % 0 to 0.5
0 to 1.0
Nickel (Ni), % 0 to 1.0
0.5 to 1.0
Nitrogen (N), % 0
0 to 0.030
Phosphorus (P), % 0 to 0.020
0 to 0.040
Silicon (Si), % 0 to 0.3
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 1.0
0
Titanium (Ti), % 0
0 to 0.75
Zinc (Zn), % 30.2 to 42.5
0