MakeItFrom.com
Menu (ESC)

CC754S Brass vs. S41050 Stainless Steel

CC754S brass belongs to the copper alloys classification, while S41050 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is CC754S brass and the bottom bar is S41050 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 90
160
Elastic (Young's, Tensile) Modulus, GPa 100
190
Elongation at Break, % 11
25
Poisson's Ratio 0.31
0.28
Shear Modulus, GPa 40
76
Tensile Strength: Ultimate (UTS), MPa 320
470
Tensile Strength: Yield (Proof), MPa 160
230

Thermal Properties

Latent Heat of Fusion, J/g 170
270
Maximum Temperature: Mechanical, °C 120
720
Melting Completion (Liquidus), °C 830
1440
Melting Onset (Solidus), °C 780
1400
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 95
27
Thermal Expansion, µm/m-K 21
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 27
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 30
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 23
7.0
Density, g/cm3 8.1
7.8
Embodied Carbon, kg CO2/kg material 2.8
1.9
Embodied Energy, MJ/kg 47
27
Embodied Water, L/kg 330
97

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 29
98
Resilience: Unit (Modulus of Resilience), kJ/m3 130
140
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 11
17
Strength to Weight: Bending, points 13
17
Thermal Diffusivity, mm2/s 31
7.2
Thermal Shock Resistance, points 10
17

Alloy Composition

Aluminum (Al), % 0 to 0.8
0
Carbon (C), % 0
0 to 0.040
Chromium (Cr), % 0
10.5 to 12.5
Copper (Cu), % 57 to 63
0
Iron (Fe), % 0 to 0.7
84.2 to 88.9
Lead (Pb), % 0.5 to 2.5
0
Manganese (Mn), % 0 to 0.5
0 to 1.0
Nickel (Ni), % 0 to 1.0
0.6 to 1.1
Nitrogen (N), % 0
0 to 0.1
Phosphorus (P), % 0 to 0.020
0 to 0.045
Silicon (Si), % 0 to 0.3
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 1.0
0
Zinc (Zn), % 30.2 to 42.5
0