MakeItFrom.com
Menu (ESC)

CC755S Brass vs. C12900 Copper

Both CC755S brass and C12900 copper are copper alloys. They have 60% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is CC755S brass and the bottom bar is C12900 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
120
Elongation at Break, % 9.5
2.8 to 50
Poisson's Ratio 0.31
0.34
Shear Modulus, GPa 40
43
Tensile Strength: Ultimate (UTS), MPa 390
220 to 420
Tensile Strength: Yield (Proof), MPa 250
75 to 380

Thermal Properties

Latent Heat of Fusion, J/g 170
210
Maximum Temperature: Mechanical, °C 120
200
Melting Completion (Liquidus), °C 820
1080
Melting Onset (Solidus), °C 780
1030
Specific Heat Capacity, J/kg-K 390
390
Thermal Conductivity, W/m-K 120
380
Thermal Expansion, µm/m-K 21
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 27
98
Electrical Conductivity: Equal Weight (Specific), % IACS 30
98

Otherwise Unclassified Properties

Base Metal Price, % relative 23
32
Density, g/cm3 8.1
9.0
Embodied Carbon, kg CO2/kg material 2.7
2.6
Embodied Energy, MJ/kg 46
41
Embodied Water, L/kg 330
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 33
11 to 88
Resilience: Unit (Modulus of Resilience), kJ/m3 290
24 to 640
Stiffness to Weight: Axial, points 7.1
7.2
Stiffness to Weight: Bending, points 19
18
Strength to Weight: Axial, points 14
6.8 to 13
Strength to Weight: Bending, points 15
9.1 to 14
Thermal Diffusivity, mm2/s 38
110
Thermal Shock Resistance, points 13
7.8 to 15

Alloy Composition

Aluminum (Al), % 0.4 to 0.7
0
Antimony (Sb), % 0
0 to 0.0030
Arsenic (As), % 0
0 to 0.012
Bismuth (Bi), % 0
0 to 0.0030
Copper (Cu), % 59.5 to 61
99.88 to 100
Iron (Fe), % 0.050 to 0.2
0
Lead (Pb), % 1.2 to 1.7
0 to 0.0040
Manganese (Mn), % 0 to 0.050
0
Nickel (Ni), % 0 to 0.2
0 to 0.050
Silicon (Si), % 0 to 0.050
0
Silver (Ag), % 0
0 to 0.054
Tellurium (Te), % 0
0 to 0.025
Tin (Sn), % 0 to 0.3
0
Zinc (Zn), % 35.8 to 38.9
0