MakeItFrom.com
Menu (ESC)

CC755S Brass vs. C70400 Copper-nickel

Both CC755S brass and C70400 copper-nickel are copper alloys. They have 61% of their average alloy composition in common. There are 26 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is CC755S brass and the bottom bar is C70400 copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
120
Poisson's Ratio 0.31
0.34
Shear Modulus, GPa 40
45
Tensile Strength: Ultimate (UTS), MPa 390
300 to 310
Tensile Strength: Yield (Proof), MPa 250
95 to 230

Thermal Properties

Latent Heat of Fusion, J/g 170
210
Maximum Temperature: Mechanical, °C 120
210
Melting Completion (Liquidus), °C 820
1120
Melting Onset (Solidus), °C 780
1060
Specific Heat Capacity, J/kg-K 390
390
Thermal Conductivity, W/m-K 120
64
Thermal Expansion, µm/m-K 21
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 27
14
Electrical Conductivity: Equal Weight (Specific), % IACS 30
14

Otherwise Unclassified Properties

Base Metal Price, % relative 23
32
Density, g/cm3 8.1
8.9
Embodied Carbon, kg CO2/kg material 2.7
3.0
Embodied Energy, MJ/kg 46
47
Embodied Water, L/kg 330
300

Common Calculations

Resilience: Unit (Modulus of Resilience), kJ/m3 290
38 to 220
Stiffness to Weight: Axial, points 7.1
7.5
Stiffness to Weight: Bending, points 19
19
Strength to Weight: Axial, points 14
9.3 to 9.8
Strength to Weight: Bending, points 15
11 to 12
Thermal Diffusivity, mm2/s 38
18
Thermal Shock Resistance, points 13
10 to 11

Alloy Composition

Aluminum (Al), % 0.4 to 0.7
0
Copper (Cu), % 59.5 to 61
89.8 to 93.6
Iron (Fe), % 0.050 to 0.2
1.3 to 1.7
Lead (Pb), % 1.2 to 1.7
0 to 0.050
Manganese (Mn), % 0 to 0.050
0.3 to 0.8
Nickel (Ni), % 0 to 0.2
4.8 to 6.2
Silicon (Si), % 0 to 0.050
0
Tin (Sn), % 0 to 0.3
0
Zinc (Zn), % 35.8 to 38.9
0 to 1.0
Residuals, % 0
0 to 0.5