MakeItFrom.com
Menu (ESC)

CC755S Brass vs. S36200 Stainless Steel

CC755S brass belongs to the copper alloys classification, while S36200 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is CC755S brass and the bottom bar is S36200 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
190
Elongation at Break, % 9.5
3.4 to 4.6
Poisson's Ratio 0.31
0.28
Shear Modulus, GPa 40
76
Tensile Strength: Ultimate (UTS), MPa 390
1180 to 1410
Tensile Strength: Yield (Proof), MPa 250
960 to 1240

Thermal Properties

Latent Heat of Fusion, J/g 170
280
Maximum Temperature: Mechanical, °C 120
820
Melting Completion (Liquidus), °C 820
1440
Melting Onset (Solidus), °C 780
1400
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 120
16
Thermal Expansion, µm/m-K 21
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 27
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 30
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 23
12
Density, g/cm3 8.1
7.8
Embodied Carbon, kg CO2/kg material 2.7
2.8
Embodied Energy, MJ/kg 46
40
Embodied Water, L/kg 330
120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 33
46 to 51
Resilience: Unit (Modulus of Resilience), kJ/m3 290
2380 to 3930
Stiffness to Weight: Axial, points 7.1
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 14
42 to 50
Strength to Weight: Bending, points 15
32 to 36
Thermal Diffusivity, mm2/s 38
4.3
Thermal Shock Resistance, points 13
40 to 48

Alloy Composition

Aluminum (Al), % 0.4 to 0.7
0 to 0.1
Carbon (C), % 0
0 to 0.050
Chromium (Cr), % 0
14 to 14.5
Copper (Cu), % 59.5 to 61
0
Iron (Fe), % 0.050 to 0.2
75.4 to 79.5
Lead (Pb), % 1.2 to 1.7
0
Manganese (Mn), % 0 to 0.050
0 to 0.5
Molybdenum (Mo), % 0
0 to 0.3
Nickel (Ni), % 0 to 0.2
6.5 to 7.0
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0 to 0.050
0 to 0.3
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.3
0
Titanium (Ti), % 0
0.6 to 0.9
Zinc (Zn), % 35.8 to 38.9
0