MakeItFrom.com
Menu (ESC)

CC760S Brass vs. ACI-ASTM CA28MWV Steel

CC760S brass belongs to the copper alloys classification, while ACI-ASTM CA28MWV steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is CC760S brass and the bottom bar is ACI-ASTM CA28MWV steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 51
330
Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 22
11
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 42
76
Tensile Strength: Ultimate (UTS), MPa 180
1080
Tensile Strength: Yield (Proof), MPa 80
870

Thermal Properties

Latent Heat of Fusion, J/g 190
270
Maximum Temperature: Mechanical, °C 170
740
Melting Completion (Liquidus), °C 1000
1470
Melting Onset (Solidus), °C 940
1430
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 150
25
Thermal Expansion, µm/m-K 19
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 38
4.6
Electrical Conductivity: Equal Weight (Specific), % IACS 40
5.3

Otherwise Unclassified Properties

Base Metal Price, % relative 28
11
Density, g/cm3 8.6
7.9
Embodied Carbon, kg CO2/kg material 2.6
3.1
Embodied Energy, MJ/kg 43
44
Embodied Water, L/kg 320
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 33
110
Resilience: Unit (Modulus of Resilience), kJ/m3 29
1920
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 5.8
38
Strength to Weight: Bending, points 8.2
30
Thermal Diffusivity, mm2/s 45
6.6
Thermal Shock Resistance, points 6.2
40

Alloy Composition

Aluminum (Al), % 0 to 0.010
0
Arsenic (As), % 0.050 to 0.15
0
Carbon (C), % 0
0.2 to 0.28
Chromium (Cr), % 0
11 to 12.5
Copper (Cu), % 83 to 88
0
Iron (Fe), % 0 to 0.15
81.4 to 85.8
Lead (Pb), % 0 to 0.5
0
Manganese (Mn), % 0 to 0.1
0.5 to 1.0
Molybdenum (Mo), % 0
0.9 to 1.3
Nickel (Ni), % 0 to 0.1
0.5 to 1.0
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0 to 0.020
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.3
0
Tungsten (W), % 0
0.9 to 1.3
Vanadium (V), % 0
0.2 to 0.3
Zinc (Zn), % 10.7 to 17
0